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Abstract

For the cases of using the finite curved beam elements and taking the effects of both the shear deformation and rotary
inertias into consideration, the literature regarding either free or forced vibration analysis of the curved beams is rare.
Thus, this paper tries to determine the dynamic responses of a circular curved Timoshenko beam due to a moving load
using the curved beam elements. By taking account of the effect of shear deformation and that of rotary inertias due to
bending and torsional vibrations, the stiffness matrix and the mass matrix of the curved beam element were obtained
from the force—displacement relations and the kinetic energy equations, respectively. Since all the element property
matrices for the curved beam element are derived based on the local polar coordinate system (rather than the local
Cartesian one), their coefficients are invariant for any curved beam element with constant radius of curvature and
subtended angle and one does not need to transform the property matrices of each curved beam element from the local
coordinate system to the global one to achieve the overall property matrices for the entire curved beam structure before
they are assembled. The availability of the presented approach has been verified by both the existing analytical solutions
for the entire continuum curved beam and the numerical solutions for the entire discretized curved beam composed of
the conventional straight beam elements based on either the consistent-mass model or the lumped-mass model. In
addition to the typical circular curved beams, a hybrid curved beam composed of one curved-beam segment and two
identical straight-beam segments subjected to a moving load was also studied. Influence on the dynamic responses of
the curved beams of the slenderness ratio, moving-load speed, shear deformation and rotary inertias was investigated.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Although the curved beam is used extensively in structures, the works using the finite curved beam ele-
ments to analyze either in-plane or out-of-plane vibrations of curved beams are still quite limited. The main
reason for the last situation is that the complex formulations for the existing element property matrices of
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the curved beam element discourage the engineers from employing it. Therefore, this paper tries to look for
the more simple approach to tackle to the title problem.

In the pioneering works studying the out-of-plane vibrations of curved beams, both the analytical
methods (Rao, 1971; Silva and Urgueira, 1988; Kirkhope, 1976; Wang et al., 1980; Bickford and Maganty,
1986; Kawakami et al., 1995; Yang and Wu, 2001; Lee et al., 2002) and the finite element methods (Davis
et al., 1972a; Chaudhuri and Shore, 1977; Yoo and Fehrenbach, 1981; Palaninathan and Chandrasekharan,
1985; Lebeck and Knowlton, 1985; Howson and Jemah, 1999) were employed, but the analytical methods
seem more popular. For the analytical methods, earlier studies were based on the classical beam theory with
the effects of shear deformation and/or rotary inertias neglected until Rao (1971), Kirkhope (1976), Silva
and Urgueira (1988) presented the more accurate models. By taking into account of the effects of shear
deformation and rotary inertias, Rao (1971) used the Hamilton’s principle to derive the differential
equations for the coupled bending and torsional vibration of a curved beam and solved for the natural
frequencies of the circular rings and arcs. Based on the force/moment-displacement relationships presented
by Rao (1971), Kirkhope (1976) and Silva and Urgueira (1988) derived the dynamic stiffness matrices for
the out-of-plane vibration of the curved beams using the Lagrange’s equations and the dynamic equilibrium
equations, respectively, and then solved for the natural frequencies. Wang et al. (1980) have derived the
general dynamic slope-deflection equations for the horizontally circular curved members and then used
the conditions of dynamic equilibrium at each supporting joint to establish the frequency equation for the
multi-span circular curved beam, where the circumferential forces in the curved beam were neglected.
Bickford and Maganty (1986) have used the formulation like that of Rao (1971) to determine the natural
frequencies of thick rings and found that the accuracy of the numerical results may be improved if the effect
of variation in curvature across the cross-section of the thick curved beam was considered. Kawakami et al.
(1995) have derived the characteristic equation by applying the discrete Green functions and using the
numerical integration to obtain the eigenvalues for both the in-plane and out-of-plane free vibrations of the
non-uniform curved beams, where the formulation is much complicated than that of the classical ap-
proaches. Yang and Wu (2001) have derived the analytical solutions for a horizontally curved beam
subjected to vertical loads due to the gravities of the vehicles and horizontal loads due to the centrifugal
forces of the vehicles moving along a circular path, and for simplicity, they neglected the effect of shear
deformation and considered only the first mode approximations for the vertical defection and torsional
angle in the forced vibration analysis. By considering the reactive forces and moments due to the elastic
foundation, Lee et al. (2002) have derived the governing differential equations for the out-of-plane free
vibration of the circular curved Timoshenko beams and solved for the natural frequencies numerically.

For the finite element methods, Davis et al. (1972a) have derived the element stiffness and mass matrices
for the out-of-plane coupled bending and torsional vibration of curved Timoshenko beams from the force/
moment-displacement relations and kinetic energy equations, respectively. Where all the element property
matrices are derived based on the local straight-beam (Cartesian) coordinate system (rather than the local
curvilinear (polar) coordinate system), thus, transforming each element property matrix for the local co-
ordinate system to the one for the common global coordinate system is always required before it is as-
sembled even if the radius of curvature for the entire curved beam is a constant. Chaudhuri and Shore
(1977) have idealized the entire curved I-girder bridge as a structural system composed of three major
components, roadway, slab and steel girders, and then discretized the three components by using the an-
nular plate elements, the thin-walled circularly curved beam elements and the straight beam elements,
respectively, where the warping effect of cross-section was considered but the shear deformation effect was
neglected. Yoo and Fehrenbach (1981) have derived the stiffness and mass matrices of the spatial curved
beam element by using the minimum potential energy theory, where the effects of warping and rotary
inertias due to flexure and torsion were considered but shear deformation effect was neglected. Palanina-
than and Chandrasekharan (1985) have derived the element stiffness matrix for a three-dimensional curved
Timoshenko beam using the Castigliano’s theorem, where the coupling effects between the normal and



J.-S. Wu, L.-K. Chiang | International Journal of Solids and Structures 40 (2003 ) 7425-7448 7427

transverse shear forces were considered and the element stiffness matrix was also derived in terms of the
local straight-beam coordinates like that of Davis et al. (1972a,b). In the same year, by neglecting the effect
of shear deformation, Lebeck and Knowlton (1985) also developed an element stiffness matrix for the three-
dimensional curved beam using the ring theory, where the in-plane motions were coupled with the out-
of-plane motions due to the unsymmetrical cross-sectional area and the element stiffness matrix was derived
in terms of the local polar coordinates so that no coordinate transformation was needed to assemble the
elements. Although the procedures for deriving the stiffness matrix of the curved beam element adopted by
Lebeck and Knowlton (1985) are similar to those adopted by Chaudhuri and Shore (1977), the displace-
ment functions obtained by Lebeck and Knowlton (1985) are much simpler than those by Chaudhuri and
Shore (1977). Instead of the conventional element mass and stiffness matrices, Howson and Jemah (1999)
have developed the exact frequency-dependent dynamic stiffness matrix for a curved beam element from the
governing differential equations of motion and then used the standard assembling technique to construct
the overall dynamic stiffness matrix for the entire curved beam to obtain the natural frequencies. Their
approach has the advantage of achieving more accurate natural frequencies, but the solution procedure is
complex and the associated mode shapes must be retrieved by any other reliable methods.

In the past three decades, some novel approaches for the curved beam elements have been presented, but
they were not widely adopted in the practical applications because of their complexity or tediousness. To
improve the complex formulations of the exiting approaches, this paper derived the stiffness matrix and
mass matrix of the curved beam element from the force—displacement relations and the kinetic energy
equations, respectively, where all the element property matrices were in terms of the local polar (curvi-
linear) coordinates (instead of the local Cartesian coordinates) with the effects of both shear deformation
and rotary inertias considered. Comparing with the existing approaches (Davis et al., 1972a; Chaudhuri
and Shore, 1977; Yoo and Fehrenbach, 1981; Palaninathan and Chandrasekharan, 1985), the present one
has the following merits: (i) Instead of the local Cartesian (straight-beam) coordinate system, the element
property matrices of this paper are derived in terms of the local polar (curvilinear) coordinates, so that, for
a circular curved beam with constant radius of curvature, one may obtain the overall property matrices by
directly assembling, and the coordinate transformation as done by Davis et al. (1972a), Chaudhuri and
Shore (1977), Yoo and Fehrenbach (1981), and Palaninathan and Chandrasekharan (1985) is not required.
(i1) For the hybrid structural systems composed of curved beam elements and straight beam elements, only
one transformation from the local polar coordinate system to the global Cartesian coordinate system is
required in this paper. However, two transformations are required for the techniques presented by Davis
et al. (1972a), Chaudhuri and Shore (1977), Yoo and Fehrenbach (1981), and Palaninathan and Chan-
drasekharan (1985): the first transformation is from the local polar coordinate system to the local Car-
tesian coordinate system and the second transformation is from the local Cartesian coordinate system to
the global Cartesian coordinate system. (iii) The sign convention for the nodal forces is identical to that for
the nodal displacements, thus the transformation matrix for the nodal forces is the same as that for the
nodal displacements. However, this is not true for the transformation matrices of Davis et al. (1972a,b),
where the sign convention for the nodal forces is different from that for the nodal displacements. Although
the procedure of deriving the element property matrices in this paper was similar to that of deriving the
element stiffness matrix by Lebeck and Knowlton (1985), this paper considered the effect of shear defor-
mation and also derived the element mass matrix and it was not true for the work of Lebeck and Knowlton
(1985).

In this paper, the forced vibration responses of a horizontally curved beam subjected to a moving load
were solved using the Newmark direct integration method (Bathe, 1982). Since, for the curved beams
studied, the in-plane responses and the out-of-plane responses are uncoupled, the in-plane behaviors of the
curved beam are neglected. In addition to the curved beam element and the consistent-mass model, the
conventional straight beam element (Przemieniecki, 1968) and the lumped-mass model were also used to
perform the free and forced vibration analyses of the curved beams. It is believed that good agreements
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between the results obtained from different beam elements and different mass models will also be the

reasonable evidence for the availability of the presented approach.

2. Displacement functions and shape functions

For an infinitesimal element of curved beam in static equilibrium as shown in Fig. 1, if each cross-section
remains constant along the entire beam length and is doubly symmetric, then the displacement functions for
the transverse displacement in the axial y-direction, u,, the rotational (bending) angle about the radial x-
axis, ¥,, and the torsional (twisting) angle about the tangential z-axis, \,, are given by Lebeck and

Knowlton (1985)

u, = G1 + G2Cs0 + G3sin 0 + G4 cos 0 + Gs0sin 0 + Gg0 cos 0

1
v, = E[Gz + G3co80 — Gy sin 0 + Gs(0 cos 0 + sin 0) — Gg(0sin 0 — cos 0))

1 . . .
Wy = z [—G38in 0 — Gycos 0 — Gs(0sin 0 — 2C, cos ) — Gg(0 cos 0 + 2C, sin 0)]

where
Co = ‘I)br/(l + (pbt)

Cso = 1 +[GJy/(R*K'GA))]
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Fig. 1. The definition for the out-of-plane element forces (F,, M, and M;) and element displacements (u,, , and ) for a curved beam

element with subtended angle o, the local curvilinear (polar) coordinate system xyz(6) and the global coordinate system xjz.
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with
@, = EL./(GJy) (3a)
_ v
L=, = o

It is noted that the displacement functions given by Egs. (1a)-(1c) are obtained from Lebeck and
Knowlton (1985), but the shear deformation parameter GJ,/(R*k'GA) appearing in Eq. (2b) is obtained
from Davis et al. (1972a), because the effect of shear deformation is not considered by Lebeck and
Knowlton (1985). In other words, the element displacements, u,, Y, and y,, given by Eqgs. (1a)—(1c) are the
results of taking account of the effects of both shear deformation and rotary inertias and are available for
either thin or thick curved beams.

In Egs. (1a)-(1c), G;—Gg are the integration constants determined by the boundary conditions of the
curved beam element, while in Egs. (2) and (3), 4 is the cross-sectional area, R is the average radius of
curvature of the curved beam element, /. is the moment of inertia of the area 4 about the radial x-axis, Jj is
the polar moment of inertia of the area 4 about the tangential z-axis, E is the Young’s modulus, G is the
shear modulus and &’ is the shear correction factor. The parameter @, defined by Eq. (3a) denotes the ratio
of bending rigidity to torsional rigidity.

Rewriting Egs. (1a)—(1c) in matrix form gives

{u} = [H{G} ()
where
{ul ={u, b, ¥y} (5)
{G}={Gi G, G; Gy G5 G} (6)
1 G0 sin 0 cos 0 0sin 0 Ocost
[Hl=|0 1/R cosO/R —sin0/R (6cos0+sin0)/R —(0sin0 — cos0)/R (7)

0 0 —sin0/R —cos0/R —(0sin0 —2C,cos0)/R —(Ocosl+2C,sinb)/R

In Egs. (4)—(7), the symbols [-] and {-} represent the rectangular (or square) matrix and the column vector,

respectively.
Applying the boundary conditions for the curved beam element shown in Fig. 1 to Eq. (4), one obtains
{0} = [B{G} (8)
where
{6} ={un VY VYo w2 Vo Y} )
[1 C_6, sing, | cos6, 6,siné, 6, cosb, i
0 1/R cosf/R | -sinb, /R (6, cos6, +sinb,)/R — (6, sinb, —cosb,)/R
8] 0 o -sing,/R —cos6, /R —(6,sind, —2C, cosb)/R —(6, cosb, +2C, sinb,)/R (10)
|1 C,6, sing, | cosé, 6, sind, 6, cosé,
o 1/R cosé,/R -sing,/R  (6,cos6, +sinb,)/R - (6, sind, —cosb,)/R
o o -sind,/R{—cosh,/R —(6,sin, —2C, cosh,)/R (8, cosb,+2C, sinb,)/R]|
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From Eq. (8) one obtains the integration constants to be

{G} = [B] {3} (11)
The substitution of Eq. (11) into Eq. (4) determines the displacement function vector
{u} = [H][B]"'{5} (12)
According to the definition for the shape functions, from Eq. (12) one obtains
y ay @yp - Ay
[ZZ] = [H] [B] = ZZ)cl &x2 e let? (13)
azl &ZZ T azﬁ

where the coefficients of [d], @,;, a, and a.; (i = 1-6), appearing in Eq. (13) denote the shape functions
associated with deflections in y, x and z directions, u,, . and ¥, respectively. For simplicity, “implicit”
shape functions [a], instead of the “explicit” ones, were used in this paper.

3. Stiffness matrix for curved beam element

From Davis et al. (1972a,b) and Lebeck and Knowlton (1985) one obtains the following force—dis-
placement relations

F = Ko (u, — Ry,) (14a)
R )
EIL
= () = RYy) (140)
My = % (RY; + RY,) (14¢)

where the primes denote the derivatives with respect to the angular coordinate 0.
From Egs. (1) and (14) one obtains

{f}=d{c} (15)
where
y=A{f M My} (16)
0 1/(R®y) 0 O 0 0
[d]:E—[; 0 0 0 0 2cosO/(1+dy) —2sin6/(1+ Dy) (17)
0 1/®&, 0 0 =2sin0/(1+®,) —2cosb/(1+ &)

Static equilibrium between the forces at node @ and those at node @ for the curved beam element shown in
Fig. 1 requires that

{Fh My My}=—{F. Mo Mp} (18)
Applying Eq. (15) to node @ and node @ (see Fig. 1) and using the relations given by Eq. (18), one obtains
{F} = [DHG} (19)
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where

{F}y={F1 Mg My Fy M, Mp} (20)
[0 -1/(R®d,,) 00 0 0 ]
0 0 010 —2cosf,/(1+@,) 2sinf, /@ +D,)

D)= EL|0 Y%y 0j0 2sing/a+®,) 20086, /0+@y) 21

R*|0 1/(R®,) O0:0 0 0]

0 0 o§ 0 2cosd,/a+®,) -—2sind,/@+d,,)
0  yY®, o0:0 —2sind,/0+P,) —2cosb,/A+P,,)|

Introducing the values of {G} defined by Eq. (11) into Eq. (19) gives
{F} = [DI[B]"'{s} = [K]{5} (22)

where
K] = [D][B]”" (23)

represents the stiffness matrix of the curved beam element.

4. Mass matrix for curved beam element

For the curved beam element shown in Fig. 1, its kinetic energy is given by

0
T:% /@ p{i) T[] (i} RO (24)
where
40 0
A =10 1, 0 (25)
0 0 Jy

In Eq. (24), the dots denote the derivatives with respect to time ¢ and p is the mass density of the beam
material, while in Eq. (25), the values of 7, and Jy are defined by Egs. (3b) and (3c), respectively.
For harmonic free vibrations, one has

{u} = {@je"" (26)

where {&} is the amplitude of {u}, w is the natural frequency of the curved beam, ¢ is time and i = v—1.
Substituting Eq. (26) into Eq. (24) and using the relation given by Eq. (12) yield

T = S o) )5} 27)
where
M = pR([BMT( / 2[H]T[A][H}d0> 3" (28)

denotes the “consistent mass matrix’’ of the curved beam element.
To determine the consistent mass matrix of a curved beam element, [M], using Eq. (28), it is only re-
quired to calculate the following integration
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J— 0 T
= [ a0 (29)
I

and all the other numerical calculations are performed by computer. The results for the integration defined
by Eq. (29) are shown in Appendix A at the end of this paper.
For comparison, a “lumped mass matrix” for the same curved beam element given by

[M*] = LpRa[ALJpALJ,] "

was also introduced. Where the symbol [-| denotes a diagonal matrix and the notation a (= 6, — 0,) de-
notes the subtended angle of the curved beam element (see Fig. 1).

5. Property matrices and shape functions for straight beam element

Since all the element stiffness and mass matrices for the straight beam element given by Przemieniecki
(1968) were derived based on the local coordinate system, x)z, shown in Fig. 2(a) and part of them is
available only for a two-dimensional beam, how to use the materials of the existing literature to incorporate
with the property matrices established on the local curvilinear coordinate system for the curved beam ele-
ment, x)z(0), shown in Fig. 2(b) is the key point of using the straight beam element to tackle the title
problem. In Fig. 2(a) the longitudinal axis along the length of the straight beam is selected as the x-axis, but
in Fig. 2(b) the circumferential axis along the length of the curved beam is selected as the z-axis (or 0-axis,
cf. Fig. 1). Since both the coordinate systems shown in Fig. 2(a) and (b) obey the right-hand rule and the
positive directions for the two y-axes are assumed to be identical here, the positive x-axis for the coordinate
system shown in Fig. 2(b) must be opposite to the positive z-axis for the coordinate system shown in Fig.
2(a). For this reason, the coefficients of the element property matrices in terms of the coordinate of Fig. 2(b)
and relating to z, y and x are equal to the associated ones of Przemieniecki (1968) relating to x, y and z,
respectively. In other words, some of the sequential order and the sign convention for the coefficients of the
element property matrices derived based on the coordinate system shown in Fig. 2(a) (Przemieniecki, 1968)
must be changed, then the results obtained may agree with the corresponding ones derived based on the
curvilinear coordinate system shown in Fig. 2(b). By means of the foregoing technique and by referring to
Przemieniecki (1968) one may obtain the stiffness and mass matrices of the straight Timoshenko beam

U
@ -x
- —
zK
(@
u
DES ) »7(0)
- [/ —

®)

Fig. 2. (a) The local coordinate system for the conventional straight beam element (Przemieniecki, 1968), xyz, and (b) the local cur-
vilinear coordinate system for the curved beam element in this paper, xyz(0).
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element as shown in the report of Wu and Chiang (2003) and the associated shape functions given by (cf.
Fig. 2(b))

'ayl Gy Gy T
[(ﬂT = axl Ele e axﬁ
_azl [122 te az6
Cy[l =38 +28 + (1 - &) Cy(6& — 68 0
—Cy[E 28+ E+L(E-EVDJ —Cy[-1+4E =38 — (1 - &),y 0
_ _(1 —é)f( 0 _<1 —&)in (31)
C,(38 — 28 + ¢o, Cyy(—6& + 6% 0
—Cy[-&+E-L(E-&)) —C,y (28 — 38 — @)y 0
L —l&L 0 —lin
where
_Z _7Y _x
é_ga ’7_67 C_e (323')
Cy=1/(1+2,) (32b)
@, = 12EL. /(K GA?) (32¢)

It is noted that, for the case of considering the effect of shear deformation, Przemieniecki (1968) only gives
the shape functions relating to the transverse deflections (u,) and rotation () of a two-dimensional beam
element, i.e., a,; and a,; (i = 1, 2, 4, 5), and all the other shape functions appearing Eq. (31) were derived by
this paper. It will be also noted that the (positive and negative) signs of the eight shape functions given by
Przemieniecki (1968), a,; and a,; (i = 1, 2, 4, 5), are not exactly identical to those shown in Eq. (31) because
of the reason shown in the first paragraph of this section (cf. Fig. 2).

6. External loading vector due to a moving load

For a horizontally curved beam subjected to a moving load with magnitude P along the circumferential
direction, all nodal forces of the whole curved beam are equal to zero except those of the beam element on
which the moving load P applies. The non-zero elemental nodal force vector is given by

{Ft ={a}P (33)
where

{F}={F1 Ma My F, M, Mp} (34)

{a,} = {@1(0) a2(0) --- a(0)} (for curved beam elements) (35a)

{a,} = {@1(¢) an(®) --- ae(&)} (for straight beam elements) (35b)

In Eq. (35a) the values of a,,(0) (i = 1-6) denote the shape functions for the “curved” beam element defined
by Eq. (13), and in Eq. (35b) the values of a,,(¢) (i = 1-6) denote the shape functions for the “straight”
beam element defined by the first column of Eq. (31).
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7. Transformation from local to global coordinate system

The stiffness matrix and mass matrix for the curved beam element derived in the previous sections are in
terms of the local curvilinear (polar) coordinate system, xyz(0). Direct assemblage of all the element
property matrices will determine the overall property matrices for the entire circular curved beam with
constant radius of curvature and transforming each element property matrix from the local coordinates to
the global ones is not required before assemblage. But this is not true for the element property matrices of
the curved beam element derived in by Davis et al. (1972a), Chaudhuri and Shore (1977), Yoo and Feh-
renbach (1981), and Palaninathan and Chandrasekharan (1985), because they are derived in terms of the
local Cartesian coordinates Xyz as shown in Fig. 3 or 4. However, if a curved beam is composed of many
curved beam segments with different curvatures or is discretized by many straight beam elements, then
transformation of each property matrix for either the curved beam element or the straight beam element is
always required before it is assembled.

7.1. Transformation matrix for the curved beam element

For the curved beam element shown in Fig. 3, if the nodal displacements with respect to the local
curvilinear (polar) coordinate system x)z(0) are represented by

{oy=A{un Y Yo w2 Vo Vel (36)
and those with respect to the global coordinate system Xyz are represented by

{6y ={w w w3 uy s #g}) (37)
then the relationship between {6} and {6} is given by

{5} = {5} (38)

X

Fig. 3. The relationship between the nodal displacements for the curved beam element in the local curvilinear coordinate system xyz(0),
Uy, Vo1, Wors - - - Wgp, and those in the global coordinate system Xyz, #;, 4, %, . . . , .
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Z

)

o _
~ —X
Fig. 4. The relationship between the nodal displacements for the straight beam element in the local Cartesian coordinate system, x)z,
uy,uy, Uz, . .., U, and those in the global coordinate system xyz, u;, uy, 43, . . . , -
where
1 o o ‘o o o |
0 cosf, —-sinf,i 0 O 0
0 sinf, cosf, i 0O O o]
=% 220 080 L0 00 (39)
(0] (0} (0] 3 1 (0) (0]
o o 0 | 0 cosf, -sind,
0 o 0 ! 0 sind, cosé, ]

which is the transformation matrix for the element property matrices of the curved beam element derived in
the previous sections. In Eq. (39), 0, denotes the angle between the negative x-axis and the negative local
curvilinear x-axis at node @ and 60, denotes that at node @ (see Fig. 3). They are measured as positive in the
clockwise direction from the negative X-axis.

Based on the transformation matrix given by Eq. (39), the stiffness and mass matrices of a curved beam
element with respect to the global coordinate system xjz, [K] and [M], are respectively determined by

[K] = [ [K][/] (40)

(M) = [2]" [M][/] (41)

where [K| and [M] are the stiffness and mass matrices of a curved beam element with respect to the local
curvilinear coordinate system x)z(6) defined by Egs. (23) and (28), respectively. Eq. (41) is also available for
the element lumped mass matrix [M*] defined by Eq. (30). It is noted that, in the existing literature of Davis
et al. (1972a,b), Chaudhuri and Shore (1977), Yoo and Fehrenbach (1981) and Palaninathan and Chan-
drasekharan (1985), two transformations are required for the property matrices of each curved beam
element before they are assembled: the first transformation is from the local curvilinear coordinate system
xyz(0) to the local Cartesian coordinate system %z (see Figs. 3 and 4) and the second transformation is from
the local Cartesian coordinate system xyZ to the global coordinate system Xyz. However, the formulation of
this paper requires only one transformation, because the property matrices of each curved beam element
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are transformed directly from the local curvilinear coordinate system xyz(6) to the global coordinate system

Xyz as one may see from Eqgs. (40) and (41).

7.2. Transformation matrix for the straight beam element

Similarly, for the straight beam element shown in Fig. 4, if the nodal displacements with respect to the
local Cartesian coordinate system x)z are represented by

{0} ={w1 w w3y uy us ug} (42)

and those with respect to the global coordinate system xyz are represented by Eq. (37), then the relationship
between {0,} and {8} is given by

{6} = [A]{6} (43)
where
(1 0 o o o o |
0 cosf, —-sind,i o o 0
L0 o 0

0 siné cosé
[A,]=] - Lol oo (44)

o o o i1 o 0
O o 0O | 0 cosf, -—sind,
o o 0 !0 sind, cosé, ]

which is the transformation matrix for the element property matrices of the straight beam element. Where
0, denotes the angles between the negative ¥-axis and the outward “normal’ for the straight beam element
(i.e., the z-axis in Figs. 3 and 4). It is also measured as positive in the clockwise direction from the negative
x-axis. In general, the coefficients of the transformation matrix for a straight beam element are determined
by the global coordinates of the two nodes (D and @) of the beam elements, (¥;,,z;) and (X2,2,22). In
such a case, the angle 0, is determined by (cf. Fig. 4)

0,=0.51—y (45)
where 7 is the angle between the straight beam element and the positive x-axis given by

y=tan'[(zp —2) /(X — X))] (46)

8. Numerical results and discussions

For convenience, a curved beam with the effects of both rotary inertias and shear deformation neglected
is call the “Euler” beam, the one with only the effect of rotary inertias due to bending and torsional vi-
brations considered is call the “rotary” beam, and the one with the effects of both rotary inertias and shear
deformation considered is call the “Timoshenko’ beam, in this paper. In addition, the total number of
elements is n, = 20 for the results obtained from the curved beam (CB) elements and n. = 40 for those
obtained from the straight beam (SB) elements (Wu and Chiang, 2003), and all the numerical results refer
to those obtained from the Timoshenko beams using the curved beam (CB) elements incorporated with the
consistent-mass models if there is no particular declaration.
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8.1. Convergence of the presented method

In this section a circular curved Timoshenko beam with total subtended angle & = 180° and clamped—
clamped ends (i.e., u, =0, ¥, =0, Y, =0 at 0 = 0° and 180°) is used to show the convergence of the
presented curved beam element. The other given data for the beam are: radial thickness a = 2", axial
thickness b = 2", average radius of curvature R =4", 4 =ab =4 in?, [, = 1.3622 in.*, [, = 1.3856 in.*,
Jo=1.+1, =2.7478 in., Poisson’s ratio v =0, shear correction factor k¥’ = 0.833, Young’s modulus
E = 30 x 10° psi and shear modulus G = E/[2(1 + v)] = 15 x 10° psi. The four solid lines (—) in Fig. 5(a)—
(d) show the relationships between the lowest four natural frequencies (@;, i = 1-4) of the 180° clamped—
clamped Timoshenko beam obtained from the presented method (based on consistent mass model) and the
total number of curved beam elements used, n.. The natural frequencies corresponding to the four hori-
zontal dashed lines (———-) in Fig. 5(a)—(d) are the exact values obtained from Rao (1971). It is evident that
the FEM results of this paper are very close to the exact values if n, > 20 and this is the reason why 20
curved beam elements are used to do the finite element analysis in this paper.

8.2. Validation of natural frequencies

To confirm the reliability of the formulations of this paper, the last clamped—clamped circular curved
beam with total subtended angles & = 180°, 270° and 360° is further studied. It is noted that the given data
for the last curved beam are selected to be completely satisfied the conditions given by Tables 3-5 of Rao
(1971): EL./GJy = 1.0, E/G = 2.0, a/b = 1.0 and a/R = 0.5, so that one may compare the current numerical
results with the exact solutions of Rao (1971). For simplicity, the values of moment of inertias for the cross-
sectional areas are usually calculated with the classical simple formulas (Kawakami et al., 1995, Yang and

~
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Fig. 5. The relationships between the lowest four natural frequencies (@;, i = 1-4) of the 180° clamped—clamped Timoshenko beam and
the total number of curved beam elements, 7., for (a) @;, (b) @,, (c) ®;, and (d) @4.
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Wu, 2001; Lee et al., 2002), I, = ab*/12, I, = a’b/12 and J,y = I, + I,, rather than by the laborious formulas
given by Egs. (3b) and (3c¢). This is one of the main reasons that the numerical results of one report may be
slightly different from those of the other report as shown by Davis et al. (1972b). Since the natural fre-
quencies obtained with the values of 7, and Jy defined by Egs. (3b) and (3c) are more close to the exact
values of Rao (1971), this paper uses Eqgs. (3b) and (3c) to calculate the values of I, and Jj except those
relating to Yang and Wu (2001).

_ Table I(panel A) shows the influence of the total subtended angle & and the slenderness ratio
S: = [b/(Ra)](b/R) on the lowest four frequency parameters of the circular Euler, rotary and Timoshenko
curved beams, f5; = w;/pAR*/(EL,) (i = 1-4), based on the “consistent-mass” model, while Table 1(panel
B) shows that based on the “lumped-mass” model. Where the symbols “~” and “_” on the top of the

Table 1
The lowest four natural-frequency parameters of the 180°, 270° and 360° circular arcs with fixed end conditions, ff; = w;\/pAR*/(EL)
(i = 1-4), based on “consistent-mass’ (panel A) and “lumped-mass” (panel B) models

x_ Mode Euler beam Rotary beam Timoshenko beam
() no., i Exact B, B Exact B, B Exact B, B
(Rao, (Rao, (Rao,
1971) 1971) 1971)
Panel A
180° 1 1.839 1.837 1.838 1.769 1.770 1.773 1.647 1.654 1.659
(0.080) 2 5.305 5.310 5.312 4.778 4.773 4.786 4.176 4.177 4.173
3 11.108 11.118 11.123 9.360 9.341 9.375 7.701 7.699 7.729
4 19.006 19.022 19.031 14.841 14.818 14.869 11.676 11.686 11.709
270° 1 0.758 0.760 0.761 0.747 0.748 0.748 0.729 0.726 0.727
(0.053) 2 2.000 2.001 2.003 1.888 1.887 1.892 1.758 1.777 1.783
3 4.406 4.408 4414 3.997 3.993 4.006 3.624 3.597 3.610
4 7.822 7.832 7.842 6.778 6.770 6.795 4.898 5.705 5.777
360° 1 0.438 0.438 0.439 0.433 0.434 0.434 0.424 0.426 0.427
(0.040) 2 0.952 0.952 0.9551 0.918 0.918 0.921 0.887 0.893 0.896
3 2.137 2.139 2.144 2.005 2.005 2.012 1.892 1.893 1.901
4 3.965 3.971 3.980 3.661 3.606 3.620 3.312 3.315 3.327
B; B B B B; B
Panel B
180° 1 1.839 1.837 1.837 1.769 1.770 1.772 1.647 1.654 1.657
(0.080) 2 5.305 5.310 5.307 4.778 4.772 4.781 4.176 4.150 4.168
3 11.108 11.116 11.111 9.360 9.324 9.361 7.701 7.654 7.711
4 19.006 19.016 19.010 14.841 14.715 14.829 11.676 11.533 11.661
270° 1 0.758 0.760 0.7605 0.747 0.748 0.748 0.729 0.726 0.727
(0.053) 2 2.000 2.001 2.000 1.888 1.887 1.889 1.758 1.776 1.779
3 4.406 4.408 4.404 3.997 3.991 3.997 3.624 3.586 3.601
4 7.822 7.830 7.824 6.778 6.756 6.776 4.898 5.668 5.773
360° 1 0.438 0.438 0.438 0.433 0.434 0.434 0.424 0.426 0.426
(0.040) 2 0.952 0.952 0.952 0.918 0.918 0.919 0.887 0.892 0.894
3 2.137 2.139 2.137 2.005 2.004 2.006 1.892 1.891 1.895
4 3.965 3.970 3.965 3.661 3.603 3.607 3.312 3.300 3.313

Note: /§, and B, with “consistent-mass” model and /}f and B with “lumped-mass” model are obtained from CB and SB elements,
respectively. @ is the total subtended angle and S, is the slenderness ratio defined by S, = [b/(R%)](b/R).
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notation f3; denote the values of f5; obtained using the curved beam (CB) elements and straight beam (SB)
elements, respectively, while the right superscript “+”” on f3; shown in Table 1(panel B) denotes the values of
f; obtained using lumped-mass model. In other words, the notation f; (without superscript “x”’) denotes the
values of f5; obtained using consistent-mass model (cf. Table 1(panel A)). From Table 1 one sees that: (i)
The values of f5; (i = 1-4) obtained from SB element based on the consistent-mass model, f3,, are very close
to the corresponding ones obtained from the CB element based on the consistent-mass model, f;, parti-
cularly those for the lowest three modes (i.e., f; = f8,); (ii) The values of 8, (i = 1-4) obtained from the SB
element based on lumped-mass model, f;, are very close to the corresponding ones obtained from the CB
element based on the lumped-mass model, ﬂ (i.e. ﬁ ~ [3 ); (iii) The values of f; (i = 1-4) obtained from
either the SB element (8, and ,B ) or the CB element (p; and f7) are also very close to the corresponding exact
solutions given by Rao (1971) as listed in columns 3, 6 and 9 of Table 1, respectively; (iv) The values of
either B., B, ﬁ or B (i= 1-4), decrease with increasing the total subtended angle a; (v) The differences
between the values of either ﬂl, B., ﬁ or B! (i = 1-4) for the Timoshenko beams and the corresponding ones
for the rotary (or Euler) beams decrease with decreasing the slenderness ratios S, = [b/(R&)](b/R). Based
on all the above-mentioned reasonable results, it is believed that the theory presented and the computer
programs developed for this paper should be available.

For a straight beam, the effects of rotary inertias and shear deformation are dependent upon the length
ratio defined by S, = b/L with L being the beam length. However, for a curved beam, the last effects are
dependent upon both the arc-length ratio 5/(Ra) and thickness ratio b/R. Therefore, the slenderness ratio
for a curved beam is defined by S, = [b/(R&)](b/R) in this paper.

8.3. Validation of forced vibration responses

To confirm the reliability of the presented theories regarding the forced vibration responses of a hori-
zontally curved beam subjected to a moving load (cf. Fig. 6), the example given by Yang and Wu (2001)
was solved using the CB elements incorporated with the consistent-mass models here. The curved beam was
simply supported (i.e., u, = ¥, = 0) and the given data are: a =5m, b =18 m, a =30°==n/6 rad, R =
45.84 m, total arc length L = Rz =24 m, E = 32.2 x 10° N/m?,v = 0.2, G = E/[2(1 4+ v)] = 13.417 x 10° N/
m?, K =0.833, [, =ab’/12=243 m*, [, =ba’/12=18.75 m*, Jy =1, +1,=21.18 m*, 4 =ab =9 m’,
Vp =40 m/s, P = 9.8 x 29.9 x 103 N and damping ratio &, = 0. It is noted that, to agree with Yang and Wu

Fig. 6. Nomenclature for a horizontally curved beam subjected to a moving load P.
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Fig. 7. Time histories of vertical displacements at the middle point C of the simply supported 30° horizontally curved beam subjected to
a moving load with P = 293,020 N, 7> = 40 m/s and damping ratio ¢; = 0 obtained from Yang and Wu (2001) ( ) and from this
paper: (—) for Euler beam; (- - - * - - -) for Timoshenko beam.

(2001), the values of 7, and J, are calculated with the classical simple formulas, I, = ab®/12, I, = a*b/12 and
Jy = I, + 1, in this section and with Eqs. (3b) and (3c) throughout the paper.

The equations of motion for the forced vibrating system were solved with the Newmark direct inte-
gration method (Bathe, 1982) with time step Az = 0.001 s. Fig. 7 shows the time histories of the vertical
displacements at the middle point C of the curved beam, u;(¢). Where the solid line (—) was obtained from
Yang and Wu (2001) and the dash line (——-) and the dotted line with stars (- -- * ---) were obtained from
this paper based on the Euler beam theory and Timoshenko beam theory, respectively, using CB elements
incorporated with the consistent-mass model. Closeness to each other between the three curves reveals the
availability of the presented theories and the developed computer programs. Since the present curved beam
is a “thin”” beam with slenderness ratio S, = [b/(R&)](b/R) = 0.0029, the effects of shear deformation and
rotary inertias are negligible. This is the reason why the time history of the Euler beam is very close to that
of the Timoshenko beam as shown in Fig. 7.

8.4. Effect of slenderness ratio ( S,) on natural frequencies

From Table | one finds that the frequency parameters f; (i = 1-4) of the Timoshenko beams are much
smaller than the corresponding ones of the Eluer beams for the circular arc with subtended angle & = 180°,
this is because the 180° circular arc is a “thick” beam with slenderness ratio S, = [b/(R&)](b/R) = 0.080.
However, for the arc with subtended angle & = 360° the values of f5; (i = 1-4) for the Timoshenko beams
are very close to the corresponding ones for the Eluer beams, because slenderness ratio of the 360° arc,
S; = 0.040, is much smaller than that of the 180° arc. The circular arcs for Table 1 are “long” curved beams
with subtended angle & > 90°, thus, this section studies the effect of slenderness ratio S, on natural fre-
quencies of a “short” curved beam with & < 90°, i.e., the simply supported 30° horizontally curved beam
for Fig. 7. Here all dimensions of the curved beam are kept unchanged except that the size of the axial
thickness () is enlarged from 1.8 to 3.6, 5.4, and 7.2 m, respectively. Table 2 shows the influence of
slenderness ratio S, on the lowest four frequency parameters, [}i (i = 1-4), for the Euler beam, the rotary
beam and the Timoshenko beam obtained from the CB elements incorporated with the consistent-mass
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Table 2
The lowest four frequency parameters of the simply supported 30° horizontally curved beam, ﬁi = w;\/pAR*/(EL) (i = 1-4), obtained
from CB elements incorporated with the “consistent-mass’ model

Axial thickness b, m & (Er) Mode no., i Euler beam Rotary beam Timoshenko beam
1.8 30° (0.0029) 1 34.866 34.755 34.543
0.318% 0.926%
2 142.864 141.430 138.019
1.003% 3.391%
3 322.869 316.047 300.285
2.112% 6.994%
4 574919 554.205 510.319
3.602% 11.236%
3.6 30° (0.0118) 1 34.608 34.209 33.433
1.152% 3.395%
2 142.600 137.226 126.330
3.768% 11.109%
3 322.604 297.742 255.927
7.706% 20.668%
4 574.665 519.567 406.392
9.587% 29.281%
5.4 30° (0.0265) 1 34.388 33.509 31.966
2.556% 7.043%
2 142.368 130.891 115.894
8.061% 18.595%
3 322.380 272.055 229.496
15.610% 28.811%
4 574.432 475.899 345.183
17.153% 39.908%
7.2 30° (0.0472) 1 34.238 32.700 30.336
4.492% 11.396%
2 142.204 122.956 100.103
13.535% 29.606%
3 322.202 270.102 181.516
16.169% 43.663%
4 574.250 435.295 326.408
24.197% 43.159%

Note: ¢ % = (Biguer — /;,.X) x 100%/ BI.E“IU (X =rotary, Timoshenko). & is the total subtended angle and S, is the slenderness ratio
defined by

S: = [b/(Ra)|(b/R).

model. It is seen that the effect of the slenderness ratio §r on the current ““short” circular arcs is the same as
that on the “long” ones for Table 1: the values of ﬁi (i = 1-4) for the Timoshenko beam are very close to the
corresponding ones for the rotary (or Euler) beam if S, < 0.0029 and those for the Timoshenko beam are
much smaller than the corresponding ones for the rotary (or Euler) beam if S, > 0.0472. The percentage
differences (¢ %) in Table 2 were determined from the formula: & % = (Bigye — Bix) X 100%/ By, With
X =rotary and Timoshenko, and being the values of f; obtained from the Euler beams as shown in
column 4 of Table 2.

From the final four rows of Table 1(panel A or B) one finds that the effects of shear deformation and
rotary inertias on the lowest four natural frequencies of the “clamped—clamped” 360° curved beam (with
slenderness ratio S, = 0.040) are small, however, this is not true for the “simply supported” 30° curved

iEuler
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beam (with slenderness ratio S, = 0.0472) as one may see from the final four rows of Table 2. It is believed
that the last phenomenon is reasonable, because the modal displacements of a “clamped—clamped” beam
are much smaller than those of a “simply supported” beam if their slenderness ratios are close to each
other.

8.5. Effect of Slenderness Ratio ( S, ) on Forced Vibration Responses

In general, the influence of a factor on the forced vibration responses of a vibrating system will be similar
to its influence on the frequency parameters of the same vibrating system. To confirm the last statement, the
simply supported 30° horizontally curved beam for Fig. 7 and Table 2 with slenderness ratio S, = 0.0472
and subjected to the moving load with P = 293,020 N, V» = 40 m/s, but damping ratio £; = 0.05 is studied.
Fig. 8. shows the time histories for the vertical displacements at the middle point C of the curved beam,
where the solid line (—) is obtained from the Euler beam, the dashed line with triangles (—A-) is from the
rotary beam and the dotted line with stars (--- % ---) is from the Timoshenko beam. In Fig. 7, the time
history for the Euler beam is very close to that for the Timoshenko beam, but this is not true for the time
histories shown in Fig. 8. This is because the slenderness ratio for Fig. 7 (S, = 0.0029) is much smaller than
that for Fig. 8 (S, = 0.0472). In other words, for a “thin” beam (i.e., the one with small slenderness ratio)
the frequency parameters and the forced vibration responses of the Euler beam or the rotary beam are very
close to those of the Timoshenko beam, but for a “thick™ beam (i.e., the one with large slenderness ratio)
the frequency parameters and the forced vibration responses of the Euler beam or the rotary beam will be
much different from those of the Timoshenko beam.

8.6. Dynamic responses of a hybrid curved beam due to a moving load

Fig. 9 shows the plane view of the hybrid curved beam studied. It is composed of one 120° curved beam
segment and two identical straight beam segments. The given data for the curved beam are: a = 0.1 m,
b=0.04m A=4x103m?, R=0.5m, E =184 x 10! N/m?, v = 0.27, G = E/[2(1 + v)] = 7.244 x 10'°
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Fig. 8. Time histories of vertical displacements at middle point C of the simply supported 30° horizontally curved beam with slen-
derness ratio S, = 0.0472 and subjected to a moving load with P = 293,020 N, V>, = 40 m/s and damping ratio &y = 0.05: (—) for Euler
beam; (-A-) for rotary beam; (- - - * - - -) for Timoshenko beam.
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Fig. 9. Plane view for the clamped—clamped hybrid beam composed of one 120° circular beam segment and two identical straight beam
segments with junctions P and Q simply supported.

Table 3
The lowest five natural frequencies of the clamped—clamped hybrid curved beam shown in Fig. 9, w; (rad/s)
Mode no., i Natural frequencies, w; (rad/s)
S-C method S-S method
1 810.748 810.542
2 2413.574 2413.634
3 4899.331 4900.895
4 6885.820 6886.443
5 8052.980 8053.395

N/m?, p = 7.69 x 10 kg/m?, ¥’ = 0.833. The cross-sections for the two straight beam segments are the same
as those of the circular beam segment and the length for each of them is R tan 30° = 0.2887 m.

Two techniques were used to solve the problem: the S-C method and the S-S method. The S-C method is
a new approach with the straight parts of the hybrid beam modeled by the straight beam elements and the
circular part modeled by the curved beam elements, while the S-S method is the conventional finite element
method with both the straight parts and the circular part of the hybrid beam modeled by the straight beam
elements. The lowest five natural frequencies of the hybrid curved beam, w; (i = 1-5), were shown in Table
3. From Table 3 one sees that the values of w; (i = 1-5) obtained from the S-C method are very close to the
corresponding ones from the S-S method. Thus, the key points presented in Section 5 for the modification
of property matrices of the conventional straight beam element will be correct.

If the hybrid curved beam is “at rest” at time t = 0 and is subjected to a moving load with magnitude
P =50,000 N and tangential speed V> = 0.5 m/s moves from the left end A to right end B along the
centerline of the hybrid beam (see Fig. 9), then the time histories for the vertical displacements at the middle
point C of the hybrid beam were shown in Fig. 10. In which, the solid lines (—) denote the time histories
obtained from the S-C method and the dashed lines (---) denote those obtained from the S-S method.
Among the three solid lines and the three dashed lines, those without any attachments (— and ---) were
obtained from the Euler beam theory, those with triangles (—-A— and -A-) from the rotary beam theory and
those with star (—— and -*-) from the Timoshenko beam theory. Since the present hybrid beam is a “thin”
beam (with slenderness ratio S, = [b/(Ra)](b/R) ~ 0.002), its dynamic responses obtained from the Euler
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Fig. 10. The time histories for middle point C of the hybrid beam shown in Fig. 9 subjected to a moving load with magnitude
P = 50,000 N and tangential speed V» = 0.5 m/s along the centerline; obtained from the S-C method (—, —A—, —%-); obtained from the
S-S method (---, --A--, --%--).
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Fig. 11. Influence of moving speed (7») on the maximum vertical displacements at the middle point C of the hybrid beam subjected to a
moving load with magnitude P = 50,000 N obtained from the S-C method (—, —A—, —«—) and the S-S method (- - -, -A-,-x-). The static
deflection at the middle point C of the hybrid beam is dys7 = 5.47 x 1073 m.

beam theory or the rotary beam theory are very close to those obtained from the Tiomshenko beam theory
as shown in Fig. 10. From Fig. 10 one sees that the maximum vertical displacement at the middle point C of
the hybrid beam occurs at the instant of time # =~ 1.62 s. The instantaneous distance of the moving load
from the initial position, the left end A of the hybrid beam, is s = Vpt = 0.5 x 1.62 = 0.81 m, which is near
the middle point C of the hybrid beam. Therefore, the maximum vertical displacement at the middle point
C of the hybrid beam due to a moving load will occurs at the instant of time that the moving load passing
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through the middle point C. From Fig. 10 one also finds that the vertical displacement of the middle point
C gradually increases when the moving load P moves towards C and gradually decreases when the moving
load moves away from C. It is evident that all the last results agree with the actual situations.

The influence of the moving-load speed /> on the maximum vertical central displacements of the hybrid
beam was shown in Fig. 11. Where the legends for the six curves are exactly the same as those shown in Fig.
10. It is evident that the dynamic responses of the hybrid beam obtained from the S-C methods (denoted by
the solid lines) are very close to those obtained from the S-S method (denoted by the dashed lines). The last
result agrees with that obtained from Table 3 for the lowest five natural frequencies. In addition, the dy-
namic responses obtained from the Timoshenko beam theory are very close to those obtained from the
rotary beam theory or the Euler beam theory. Since the static deflection at the middle point C of the hybrid
beam is found to be dys7 = 5.471 x 1073 m, dividing the ordinates of Fig. 11 by dys; will give the corre-
sponding magnification factors for the hybrid beam.

9. Conclusions

1. If a beam with rotary inertias and shear deformation neglected is called the Euler beam, that with the
effect of bending and torsional inertias considered is called the rotary beam, and that with the effects of both
the rotary inertias and shear deformation considered is called the Timoshenko beam, then the stiffness
matrix and mass matrix for the curved beam element and the straight beam element presented in this paper
are available for the Euler (classical) curved beams, the rotary curved beams and the Timoshenko curved
beams.

2. Using either the curved beam element or the straight beam element, the natural frequency parameters
(B,) obtained from the lumped-mass model are very close to the corresponding ones obtained from the
consistent-mass model, thus, for simplicity, one may use the simple lumped mass matrix instead of the
complex consistent mass matrix to perform the dynamic analysis of the curved beams.

3. For a curved beam with axial thickness b, total subtended angle & and average radius of curvature R,
the effects of rotary inertias and shear deformation are dependent upon both the arc-length ratio b/(Ra)
and thickness ratio b/R, thus, the slenderness ratio for a curved beam was defined by S; = [b/(Ra)](h/R) in
this paper. Numerical results reveal that the influence of slenderness ratio S, on the free vibration responses
of a curved beam is similar to that on the forced vibration responses, and for a “thin” curved beam (i.e., the
one with small slenderness ratio, e.g., S; < 0.0029), the effects of rotary inertias and shear deformation are
negligible. It is noted that, the slenderness ratio for a conventional straight beam is only dependent upon
the length ratio and is defined by S, = »/L with L being the beam length.

4. For a hybrid beam composed of curved and straight beam segments, if the technique modeling the
straight parts of the hybrid beam by straight beam elements and the curved parts by curved beam elements
is called the S-C method and that modeling all the hybrid beam by the conventional straight beam elements
is called the S-S method, then either the S-C method or the S-S method may be used to predict the dynamic
behaviors of the hybrid curved beam to achieve the satisfactory results.

5. When the S-C method is used to perform the dynamic analysis of a hybrid curved beam, appropriate
modification in the property matrices of the conventional straight beam element is necessary. In such a case,
the key points presented in Section 5 (cf. Fig. 2 also) will be beneficial.
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Appendix A. Coefficients of Matrix [H]
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£ (0)]5 = £(02) — £ (01)
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