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Abstract

For the cases of using the finite curved beam elements and taking the effects of both the shear deformation and rotary

inertias into consideration, the literature regarding either free or forced vibration analysis of the curved beams is rare.

Thus, this paper tries to determine the dynamic responses of a circular curved Timoshenko beam due to a moving load

using the curved beam elements. By taking account of the effect of shear deformation and that of rotary inertias due to

bending and torsional vibrations, the stiffness matrix and the mass matrix of the curved beam element were obtained

from the force–displacement relations and the kinetic energy equations, respectively. Since all the element property

matrices for the curved beam element are derived based on the local polar coordinate system (rather than the local

Cartesian one), their coefficients are invariant for any curved beam element with constant radius of curvature and

subtended angle and one does not need to transform the property matrices of each curved beam element from the local

coordinate system to the global one to achieve the overall property matrices for the entire curved beam structure before

they are assembled. The availability of the presented approach has been verified by both the existing analytical solutions

for the entire continuum curved beam and the numerical solutions for the entire discretized curved beam composed of

the conventional straight beam elements based on either the consistent-mass model or the lumped-mass model. In

addition to the typical circular curved beams, a hybrid curved beam composed of one curved-beam segment and two

identical straight-beam segments subjected to a moving load was also studied. Influence on the dynamic responses of

the curved beams of the slenderness ratio, moving-load speed, shear deformation and rotary inertias was investigated.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Although the curved beam is used extensively in structures, the works using the finite curved beam ele-

ments to analyze either in-plane or out-of-plane vibrations of curved beams are still quite limited. The main

reason for the last situation is that the complex formulations for the existing element property matrices of
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the curved beam element discourage the engineers from employing it. Therefore, this paper tries to look for

the more simple approach to tackle to the title problem.

In the pioneering works studying the out-of-plane vibrations of curved beams, both the analytical

methods (Rao, 1971; Silva and Urgueira, 1988; Kirkhope, 1976; Wang et al., 1980; Bickford and Maganty,
1986; Kawakami et al., 1995; Yang and Wu, 2001; Lee et al., 2002) and the finite element methods (Davis

et al., 1972a; Chaudhuri and Shore, 1977; Yoo and Fehrenbach, 1981; Palaninathan and Chandrasekharan,

1985; Lebeck and Knowlton, 1985; Howson and Jemah, 1999) were employed, but the analytical methods

seem more popular. For the analytical methods, earlier studies were based on the classical beam theory with

the effects of shear deformation and/or rotary inertias neglected until Rao (1971), Kirkhope (1976), Silva

and Urgueira (1988) presented the more accurate models. By taking into account of the effects of shear

deformation and rotary inertias, Rao (1971) used the Hamilton�s principle to derive the differential

equations for the coupled bending and torsional vibration of a curved beam and solved for the natural
frequencies of the circular rings and arcs. Based on the force/moment-displacement relationships presented

by Rao (1971), Kirkhope (1976) and Silva and Urgueira (1988) derived the dynamic stiffness matrices for

the out-of-plane vibration of the curved beams using the Lagrange�s equations and the dynamic equilibrium

equations, respectively, and then solved for the natural frequencies. Wang et al. (1980) have derived the

general dynamic slope-deflection equations for the horizontally circular curved members and then used

the conditions of dynamic equilibrium at each supporting joint to establish the frequency equation for the

multi-span circular curved beam, where the circumferential forces in the curved beam were neglected.

Bickford and Maganty (1986) have used the formulation like that of Rao (1971) to determine the natural
frequencies of thick rings and found that the accuracy of the numerical results may be improved if the effect

of variation in curvature across the cross-section of the thick curved beam was considered. Kawakami et al.

(1995) have derived the characteristic equation by applying the discrete Green functions and using the

numerical integration to obtain the eigenvalues for both the in-plane and out-of-plane free vibrations of the

non-uniform curved beams, where the formulation is much complicated than that of the classical ap-

proaches. Yang and Wu (2001) have derived the analytical solutions for a horizontally curved beam

subjected to vertical loads due to the gravities of the vehicles and horizontal loads due to the centrifugal

forces of the vehicles moving along a circular path, and for simplicity, they neglected the effect of shear
deformation and considered only the first mode approximations for the vertical defection and torsional

angle in the forced vibration analysis. By considering the reactive forces and moments due to the elastic

foundation, Lee et al. (2002) have derived the governing differential equations for the out-of-plane free

vibration of the circular curved Timoshenko beams and solved for the natural frequencies numerically.

For the finite element methods, Davis et al. (1972a) have derived the element stiffness and mass matrices

for the out-of-plane coupled bending and torsional vibration of curved Timoshenko beams from the force/

moment-displacement relations and kinetic energy equations, respectively. Where all the element property

matrices are derived based on the local straight-beam (Cartesian) coordinate system (rather than the local
curvilinear (polar) coordinate system), thus, transforming each element property matrix for the local co-

ordinate system to the one for the common global coordinate system is always required before it is as-

sembled even if the radius of curvature for the entire curved beam is a constant. Chaudhuri and Shore

(1977) have idealized the entire curved I-girder bridge as a structural system composed of three major

components, roadway, slab and steel girders, and then discretized the three components by using the an-

nular plate elements, the thin-walled circularly curved beam elements and the straight beam elements,

respectively, where the warping effect of cross-section was considered but the shear deformation effect was

neglected. Yoo and Fehrenbach (1981) have derived the stiffness and mass matrices of the spatial curved
beam element by using the minimum potential energy theory, where the effects of warping and rotary

inertias due to flexure and torsion were considered but shear deformation effect was neglected. Palanina-

than and Chandrasekharan (1985) have derived the element stiffness matrix for a three-dimensional curved

Timoshenko beam using the Castigliano�s theorem, where the coupling effects between the normal and
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transverse shear forces were considered and the element stiffness matrix was also derived in terms of the

local straight-beam coordinates like that of Davis et al. (1972a,b). In the same year, by neglecting the effect

of shear deformation, Lebeck and Knowlton (1985) also developed an element stiffness matrix for the three-

dimensional curved beam using the ring theory, where the in-plane motions were coupled with the out-
of-plane motions due to the unsymmetrical cross-sectional area and the element stiffness matrix was derived

in terms of the local polar coordinates so that no coordinate transformation was needed to assemble the

elements. Although the procedures for deriving the stiffness matrix of the curved beam element adopted by

Lebeck and Knowlton (1985) are similar to those adopted by Chaudhuri and Shore (1977), the displace-

ment functions obtained by Lebeck and Knowlton (1985) are much simpler than those by Chaudhuri and

Shore (1977). Instead of the conventional element mass and stiffness matrices, Howson and Jemah (1999)

have developed the exact frequency-dependent dynamic stiffness matrix for a curved beam element from the

governing differential equations of motion and then used the standard assembling technique to construct
the overall dynamic stiffness matrix for the entire curved beam to obtain the natural frequencies. Their

approach has the advantage of achieving more accurate natural frequencies, but the solution procedure is

complex and the associated mode shapes must be retrieved by any other reliable methods.

In the past three decades, some novel approaches for the curved beam elements have been presented, but

they were not widely adopted in the practical applications because of their complexity or tediousness. To

improve the complex formulations of the exiting approaches, this paper derived the stiffness matrix and

mass matrix of the curved beam element from the force–displacement relations and the kinetic energy

equations, respectively, where all the element property matrices were in terms of the local polar (curvi-
linear) coordinates (instead of the local Cartesian coordinates) with the effects of both shear deformation

and rotary inertias considered. Comparing with the existing approaches (Davis et al., 1972a; Chaudhuri

and Shore, 1977; Yoo and Fehrenbach, 1981; Palaninathan and Chandrasekharan, 1985), the present one

has the following merits: (i) Instead of the local Cartesian (straight-beam) coordinate system, the element

property matrices of this paper are derived in terms of the local polar (curvilinear) coordinates, so that, for

a circular curved beam with constant radius of curvature, one may obtain the overall property matrices by

directly assembling, and the coordinate transformation as done by Davis et al. (1972a), Chaudhuri and

Shore (1977), Yoo and Fehrenbach (1981), and Palaninathan and Chandrasekharan (1985) is not required.
(ii) For the hybrid structural systems composed of curved beam elements and straight beam elements, only

one transformation from the local polar coordinate system to the global Cartesian coordinate system is

required in this paper. However, two transformations are required for the techniques presented by Davis

et al. (1972a), Chaudhuri and Shore (1977), Yoo and Fehrenbach (1981), and Palaninathan and Chan-

drasekharan (1985): the first transformation is from the local polar coordinate system to the local Car-

tesian coordinate system and the second transformation is from the local Cartesian coordinate system to

the global Cartesian coordinate system. (iii) The sign convention for the nodal forces is identical to that for

the nodal displacements, thus the transformation matrix for the nodal forces is the same as that for the
nodal displacements. However, this is not true for the transformation matrices of Davis et al. (1972a,b),

where the sign convention for the nodal forces is different from that for the nodal displacements. Although

the procedure of deriving the element property matrices in this paper was similar to that of deriving the

element stiffness matrix by Lebeck and Knowlton (1985), this paper considered the effect of shear defor-

mation and also derived the element mass matrix and it was not true for the work of Lebeck and Knowlton

(1985).

In this paper, the forced vibration responses of a horizontally curved beam subjected to a moving load

were solved using the Newmark direct integration method (Bathe, 1982). Since, for the curved beams
studied, the in-plane responses and the out-of-plane responses are uncoupled, the in-plane behaviors of the

curved beam are neglected. In addition to the curved beam element and the consistent-mass model, the

conventional straight beam element (Przemieniecki, 1968) and the lumped-mass model were also used to

perform the free and forced vibration analyses of the curved beams. It is believed that good agreements
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between the results obtained from different beam elements and different mass models will also be the

reasonable evidence for the availability of the presented approach.
2. Displacement functions and shape functions

For an infinitesimal element of curved beam in static equilibrium as shown in Fig. 1, if each cross-section

remains constant along the entire beam length and is doubly symmetric, then the displacement functions for

the transverse displacement in the axial y-direction, uy , the rotational (bending) angle about the radial x-
axis, wx, and the torsional (twisting) angle about the tangential z-axis, wh, are given by Lebeck and

Knowlton (1985)
Fig. 1.

elemen
uy ¼ G1 þ G2Csohþ G3 sin hþ G4 cos hþ G5h sin hþ G6h cos h ð1aÞ

wx ¼
1

R
½G2 þ G3 cos h� G4 sin hþ G5ðh cos hþ sin hÞ � G6ðh sin h� cos hÞ� ð1bÞ

wh ¼
1

R
½�G3 sin h� G4 cos h� G5ðh sin h� 2Co cos hÞ � G6ðh cos hþ 2Co sin hÞ� ð1cÞ
where
Co ¼ Ubt=ð1þ UbtÞ ð2aÞ

Cso ¼ 1þ ½GJh=ðR2k0GAÞ� ð2bÞ
The definition for the out-of-plane element forces (Fy , Mx and Mh) and element displacements (uy , wx and wh) for a curved beam

t with subtended angle a, the local curvilinear (polar) coordinate system xyzðhÞ and the global coordinate system �xx�yy�zz.
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with
Ubt ¼ EIx=ðGJhÞ ð3aÞ

Ix ¼
Z
A

y2

1� ðx=RÞ dA ð3bÞ

Jh ¼
Z
A

x2 þ y2

1� ðx=RÞ dA ð3cÞ
It is noted that the displacement functions given by Eqs. (1a)–(1c) are obtained from Lebeck and

Knowlton (1985), but the shear deformation parameter GJh=ðR2k0GAÞ appearing in Eq. (2b) is obtained

from Davis et al. (1972a), because the effect of shear deformation is not considered by Lebeck and

Knowlton (1985). In other words, the element displacements, uy , wx and wh, given by Eqs. (1a)–(1c) are the

results of taking account of the effects of both shear deformation and rotary inertias and are available for
either thin or thick curved beams.

In Eqs. (1a)–(1c), G1–G6 are the integration constants determined by the boundary conditions of the

curved beam element, while in Eqs. (2) and (3), A is the cross-sectional area, R is the average radius of

curvature of the curved beam element, Ix is the moment of inertia of the area A about the radial x-axis, Jh is
the polar moment of inertia of the area A about the tangential z-axis, E is the Young�s modulus, G is the

shear modulus and k0 is the shear correction factor. The parameter Ubt defined by Eq. (3a) denotes the ratio

of bending rigidity to torsional rigidity.

Rewriting Eqs. (1a)–(1c) in matrix form gives
fug ¼ ½H �fGg ð4Þ

where
fug ¼ uy wx whf g ð5Þ

fGg ¼ G1 G2 G3 G4 G5 G6f g ð6Þ

½H � ¼
1 Csoh sin h cos h h sin h h cos h
0 1=R cos h=R � sin h=R ðh cos hþ sin hÞ=R �ðh sin h� cos hÞ=R
0 0 � sin h=R � cos h=R �ðh sin h� 2Co cos hÞ=R �ðh cos hþ 2Co sin hÞ=R

2
4

3
5 ð7Þ
In Eqs. (4)–(7), the symbols [Æ] and {Æ} represent the rectangular (or square) matrix and the column vector,
respectively.

Applying the boundary conditions for the curved beam element shown in Fig. 1 to Eq. (4), one obtains
fdg ¼ ½B�fGg ð8Þ

where
fdg ¼ uy1 wx1 wh1 uy2 wx2 wh2f g ð9Þ

ð10Þ
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From Eq. (8) one obtains the integration constants to be
fGg ¼ ½B��1fdg ð11Þ

The substitution of Eq. (11) into Eq. (4) determines the displacement function vector
fug ¼ ½H �½B��1fdg ð12Þ

According to the definition for the shape functions, from Eq. (12) one obtains
½~aa� ¼ ½H �½B��1 ¼
~aay1 ~aay2 � � � ~aay6
~aax1 ~aax2 � � � ~aax6
~aaz1 ~aaz2 � � � ~aaz6

2
4

3
5 ð13Þ
where the coefficients of ½~aa�, ~aayi, ~aaxi and ~aazi (i ¼ 1–6), appearing in Eq. (13) denote the shape functions
associated with deflections in y, x and z directions, uy , wx and wh, respectively. For simplicity, ‘‘implicit’’

shape functions ½~aa�, instead of the ‘‘explicit’’ ones, were used in this paper.
3. Stiffness matrix for curved beam element

From Davis et al. (1972a,b) and Lebeck and Knowlton (1985) one obtains the following force–dis-

placement relations
Fy ¼
k0GA
R

ðu0y � RwxÞ ð14aÞ

Mx ¼
EIx
R2

ðu00y � RwhÞ ð14bÞ

Mh ¼
GJh
R2

ðRw0
h þ RwxÞ ð14cÞ
where the primes denote the derivatives with respect to the angular coordinate h.
From Eqs. (1) and (14) one obtains
ff g ¼ ½d�fGg ð15Þ
where
ff g ¼ Fy Mx Mhf g ð16Þ

½d� ¼ EIx
R2

0 1=ðRUbtÞ 0 0 0 0

0 0 0 0 2 cos h=ð1þ UbtÞ �2 sin h=ð1þ UbtÞ
0 1=Ubt 0 0 �2 sin h=ð1þ UbtÞ �2 cos h=ð1þ UbtÞ

2
64

3
75 ð17Þ
Static equilibrium between the forces at node and those at node for the curved beam element shown in

Fig. 1 requires that
f Fy1 Mx1 Mh1 g ¼ �f Fy2 Mx2 Mh2 g ð18Þ
Applying Eq. (15) to node and node (see Fig. 1) and using the relations given by Eq. (18), one obtains
fF g ¼ ½D�fGg ð19Þ
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where
fF g ¼ f Fy1 Mx1 Mh1 Fy2 Mx2 Mh2 g ð20Þ

ð21Þ
Introducing the values of fGg defined by Eq. (11) into Eq. (19) gives
fF g ¼ ½D�½B��1fdg ¼ ½K�fdg ð22Þ

where
½K� ¼ ½D�½B��1 ð23Þ

represents the stiffness matrix of the curved beam element.
4. Mass matrix for curved beam element

For the curved beam element shown in Fig. 1, its kinetic energy is given by
T ¼ 1

2

Z h2

h1

qf _uugT½K�f _uugRdh ð24Þ
where
½K� ¼
A 0 0

0 Ix 0

0 0 Jh

2
4

3
5 ð25Þ
In Eq. (24), the dots denote the derivatives with respect to time t and q is the mass density of the beam

material, while in Eq. (25), the values of Ix and Jh are defined by Eqs. (3b) and (3c), respectively.

For harmonic free vibrations, one has
fug ¼ f�uugeixt ð26Þ

where f�uug is the amplitude of fug, x is the natural frequency of the curved beam, t is time and i ¼

ffiffiffiffiffiffiffi
�1

p
.

Substituting Eq. (26) into Eq. (24) and using the relation given by Eq. (12) yield
T ¼ 1

2
x2fdgT½M �fdg ð27Þ
where
½M � ¼ qRð½B��1ÞT
Z h2

h1

½H �T½K�½H �dh
� �

½B��1 ð28Þ
denotes the ‘‘consistent mass matrix’’ of the curved beam element.
To determine the consistent mass matrix of a curved beam element, ½M �, using Eq. (28), it is only re-

quired to calculate the following integration
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½H � ¼
Z h2

h1

½H �T½K�½H �dh ð29Þ
and all the other numerical calculations are performed by computer. The results for the integration defined

by Eq. (29) are shown in Appendix A at the end of this paper.

For comparison, a ‘‘lumped mass matrix’’ for the same curved beam element given by
½M�� ¼ 1
2
qRadAIxJhAIxJhc ð30Þ
was also introduced. Where the symbol d�c denotes a diagonal matrix and the notation a (¼ h2 � h1) de-
notes the subtended angle of the curved beam element (see Fig. 1).
5. Property matrices and shape functions for straight beam element

Since all the element stiffness and mass matrices for the straight beam element given by Przemieniecki

(1968) were derived based on the local coordinate system, xyz, shown in Fig. 2(a) and part of them is

available only for a two-dimensional beam, how to use the materials of the existing literature to incorporate

with the property matrices established on the local curvilinear coordinate system for the curved beam ele-
ment, xyzðhÞ, shown in Fig. 2(b) is the key point of using the straight beam element to tackle the title

problem. In Fig. 2(a) the longitudinal axis along the length of the straight beam is selected as the x-axis, but
in Fig. 2(b) the circumferential axis along the length of the curved beam is selected as the z-axis (or h-axis,
cf. Fig. 1). Since both the coordinate systems shown in Fig. 2(a) and (b) obey the right-hand rule and the

positive directions for the two y-axes are assumed to be identical here, the positive x-axis for the coordinate
system shown in Fig. 2(b) must be opposite to the positive z-axis for the coordinate system shown in Fig.

2(a). For this reason, the coefficients of the element property matrices in terms of the coordinate of Fig. 2(b)

and relating to z, y and x are equal to the associated ones of Przemieniecki (1968) relating to x, y and z,
respectively. In other words, some of the sequential order and the sign convention for the coefficients of the

element property matrices derived based on the coordinate system shown in Fig. 2(a) (Przemieniecki, 1968)

must be changed, then the results obtained may agree with the corresponding ones derived based on the

curvilinear coordinate system shown in Fig. 2(b). By means of the foregoing technique and by referring to

Przemieniecki (1968) one may obtain the stiffness and mass matrices of the straight Timoshenko beam
(a) The local coordinate system for the conventional straight beam element (Przemieniecki, 1968), xyz, and (b) the local cur-

r coordinate system for the curved beam element in this paper, xyzðhÞ.
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element as shown in the report of Wu and Chiang (2003) and the associated shape functions given by (cf.

Fig. 2(b))
½�aa�T ¼
�aay1 �aay2 � � � �aay6
�aax1 �aax2 � � � �aax6
�aaz1 �aaz2 � � � �aaz6

2
4

3
5

T

¼

Csy ½1� 3n2 þ 2n3 þ ð1� nÞUy � Csyð6n� 6n2Þg 0

�Csy ½n� 2n2 þ n3 þ 1
2
ðn� n2ÞUy �‘ �Csy ½�1þ 4n� 3n2 � ð1� nÞUy �‘g 0

�ð1� nÞ‘f 0 �ð1� nÞ‘g
Csyð3n2 � 2n3 þ nUyÞ Csyð�6nþ 6n2Þg 0

�Csy ½�n2 þ n3 � 1
2
ðn� n2ÞUy �‘ �Csyð2n� 3n2 � nUyÞ‘g 0

�‘nf 0 �‘ng

2
6666664

3
7777775

ð31Þ
where
n ¼ z
‘
; g ¼ y

‘
; f ¼ x

‘
ð32aÞ
Csy ¼ 1=ð1þ UyÞ ð32bÞ
Uy ¼ 12EIx=ðk0GA‘2Þ ð32cÞ
It is noted that, for the case of considering the effect of shear deformation, Przemieniecki (1968) only gives
the shape functions relating to the transverse deflections (uy) and rotation (wx) of a two-dimensional beam

element, i.e., �aayi and �aaxi (i ¼ 1, 2, 4, 5), and all the other shape functions appearing Eq. (31) were derived by

this paper. It will be also noted that the (positive and negative) signs of the eight shape functions given by

Przemieniecki (1968), �aayi and �aaxi (i ¼ 1, 2, 4, 5), are not exactly identical to those shown in Eq. (31) because

of the reason shown in the first paragraph of this section (cf. Fig. 2).
6. External loading vector due to a moving load

For a horizontally curved beam subjected to a moving load with magnitude P along the circumferential

direction, all nodal forces of the whole curved beam are equal to zero except those of the beam element on

which the moving load P applies. The non-zero elemental nodal force vector is given by
fF g ¼ faygP ð33Þ
where
fF g ¼ f Fy1 Mx1 Mh1 Fy2 Mx2 Mh2 g ð34Þ
fayg ¼ ~aay1ðhÞ ~aay2ðhÞ � � � ~aay6ðhÞ
� �

ðfor curved beam elementsÞ ð35aÞ
fayg ¼ �aay1ðnÞ �aay2ðnÞ � � � �aay6ðnÞ
� �

ðfor straight beam elementsÞ ð35bÞ
In Eq. (35a) the values of ~aayiðhÞ (i ¼ 1–6) denote the shape functions for the ‘‘curved’’ beam element defined

by Eq. (13), and in Eq. (35b) the values of �aayiðnÞ (i ¼ 1–6) denote the shape functions for the ‘‘straight’’
beam element defined by the first column of Eq. (31).



7434 J.-S. Wu, L.-K. Chiang / International Journal of Solids and Structures 40 (2003) 7425–7448
7. Transformation from local to global coordinate system

The stiffness matrix and mass matrix for the curved beam element derived in the previous sections are in

terms of the local curvilinear (polar) coordinate system, xyzðhÞ. Direct assemblage of all the element
property matrices will determine the overall property matrices for the entire circular curved beam with

constant radius of curvature and transforming each element property matrix from the local coordinates to

the global ones is not required before assemblage. But this is not true for the element property matrices of

the curved beam element derived in by Davis et al. (1972a), Chaudhuri and Shore (1977), Yoo and Feh-

renbach (1981), and Palaninathan and Chandrasekharan (1985), because they are derived in terms of the

local Cartesian coordinates ~xx~yy~zz as shown in Fig. 3 or 4. However, if a curved beam is composed of many

curved beam segments with different curvatures or is discretized by many straight beam elements, then

transformation of each property matrix for either the curved beam element or the straight beam element is
always required before it is assembled.

7.1. Transformation matrix for the curved beam element

For the curved beam element shown in Fig. 3, if the nodal displacements with respect to the local

curvilinear (polar) coordinate system xyzðhÞ are represented by
Fig. 3.

uy1;wx
fdg ¼ f uy1 wx1 wh1 uy2 wx2 wh2 g ð36Þ

and those with respect to the global coordinate system �xx�yy�zz are represented by
f�ddg ¼ f �uu1 �uu2 �uu3 �uu4 �uu5 �uu6 g ð37Þ

then the relationship between fdg and f�ddg is given by
fdg ¼ ½k�f�ddg ð38Þ
The relationship between the nodal displacements for the curved beam element in the local curvilinear coordinate system xyzðhÞ,
1;wh1; . . . ;wh2, and those in the global coordinate system �xx�yy�zz, �uu1; �uu2; �uu3; . . . ; �uu6.



Fig. 4. The relationship between the nodal displacements for the straight beam element in the local Cartesian coordinate system, xyz,
u1; u2; u3; . . . ; u6, and those in the global coordinate system �xx�yy�zz, �uu1; �uu2; �uu3; . . . ; �uu6.
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where
ð39Þ
which is the transformation matrix for the element property matrices of the curved beam element derived in

the previous sections. In Eq. (39), h1 denotes the angle between the negative �xx-axis and the negative local
curvilinear x-axis at node and h2 denotes that at node (see Fig. 3). They are measured as positive in the

clockwise direction from the negative �xx-axis.
Based on the transformation matrix given by Eq. (39), the stiffness and mass matrices of a curved beam

element with respect to the global coordinate system �xx�yy�zz, ½K� and ½M �, are respectively determined by
½K� ¼ ½k�T½K�½k� ð40Þ
½M � ¼ ½k�T½M �½k� ð41Þ
where ½K� and ½M � are the stiffness and mass matrices of a curved beam element with respect to the local

curvilinear coordinate system xyzðhÞ defined by Eqs. (23) and (28), respectively. Eq. (41) is also available for

the element lumped mass matrix ½M�� defined by Eq. (30). It is noted that, in the existing literature of Davis

et al. (1972a,b), Chaudhuri and Shore (1977), Yoo and Fehrenbach (1981) and Palaninathan and Chan-

drasekharan (1985), two transformations are required for the property matrices of each curved beam

element before they are assembled: the first transformation is from the local curvilinear coordinate system

xyzðhÞ to the local Cartesian coordinate system ~xx~yy~zz (see Figs. 3 and 4) and the second transformation is from

the local Cartesian coordinate system ~xx~yy~zz to the global coordinate system �xx�yy�zz. However, the formulation of
this paper requires only one transformation, because the property matrices of each curved beam element
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are transformed directly from the local curvilinear coordinate system xyzðhÞ to the global coordinate system
�xx�yy�zz as one may see from Eqs. (40) and (41).
7.2. Transformation matrix for the straight beam element

Similarly, for the straight beam element shown in Fig. 4, if the nodal displacements with respect to the

local Cartesian coordinate system xyz are represented by
fdsg ¼ f u1 u2 u3 u4 u5 u6 g ð42Þ
and those with respect to the global coordinate system �xx�yy�zz are represented by Eq. (37), then the relationship

between fdsg and f�ddg is given by
fdsg ¼ ½ks�f�ddg ð43Þ
where
ð44Þ
which is the transformation matrix for the element property matrices of the straight beam element. Where

hn denotes the angles between the negative �xx-axis and the outward ‘‘normal’’ for the straight beam element

(i.e., the ~zz-axis in Figs. 3 and 4). It is also measured as positive in the clockwise direction from the negative
�xx-axis. In general, the coefficients of the transformation matrix for a straight beam element are determined

by the global coordinates of the two nodes ( and ) of the beam elements, ð�xx1; �yy1;�zz1Þ and ð�xx2; �yy2;�zz2Þ. In
such a case, the angle hn is determined by (cf. Fig. 4)
hn ¼ 0:5p� c ð45Þ
where c is the angle between the straight beam element and the positive �xx-axis given by
c ¼ tan�1½ð�zz2 � �zz1Þ=ð�xx2 � �xx1Þ� ð46Þ
8. Numerical results and discussions

For convenience, a curved beam with the effects of both rotary inertias and shear deformation neglected

is call the ‘‘Euler’’ beam, the one with only the effect of rotary inertias due to bending and torsional vi-

brations considered is call the ‘‘rotary’’ beam, and the one with the effects of both rotary inertias and shear

deformation considered is call the ‘‘Timoshenko’’ beam, in this paper. In addition, the total number of

elements is ne ¼ 20 for the results obtained from the curved beam (CB) elements and ne ¼ 40 for those

obtained from the straight beam (SB) elements (Wu and Chiang, 2003), and all the numerical results refer
to those obtained from the Timoshenko beams using the curved beam (CB) elements incorporated with the

consistent-mass models if there is no particular declaration.
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8.1. Convergence of the presented method

In this section a circular curved Timoshenko beam with total subtended angle �aa ¼ 180� and clamped–

clamped ends (i.e., uy ¼ 0, wx ¼ 0, wh ¼ 0 at h ¼ 0� and 180�) is used to show the convergence of the
presented curved beam element. The other given data for the beam are: radial thickness a ¼ 200, axial

thickness b ¼ 200, average radius of curvature R ¼ 400, A ¼ ab ¼ 4 in.2, Ix ¼ 1:3622 in.4, Iy ¼ 1:3856 in.4,

Jh ¼ Ix þ Iy ¼ 2:7478 in.4, Poisson�s ratio t ¼ 0, shear correction factor k0 ¼ 0:833, Young�s modulus

E ¼ 30� 106 psi and shear modulus G ¼ E=½2ð1þ tÞ� ¼ 15� 106 psi. The four solid lines (––) in Fig. 5(a)–

(d) show the relationships between the lowest four natural frequencies ( ~xxi, i ¼ 1–4) of the 180� clamped–

clamped Timoshenko beam obtained from the presented method (based on consistent mass model) and the

total number of curved beam elements used, ne. The natural frequencies corresponding to the four hori-

zontal dashed lines (– – – –) in Fig. 5(a)–(d) are the exact values obtained from Rao (1971). It is evident that
the FEM results of this paper are very close to the exact values if ne > 20 and this is the reason why 20

curved beam elements are used to do the finite element analysis in this paper.
8.2. Validation of natural frequencies

To confirm the reliability of the formulations of this paper, the last clamped–clamped circular curved

beam with total subtended angles �aa ¼ 180�, 270� and 360� is further studied. It is noted that the given data

for the last curved beam are selected to be completely satisfied the conditions given by Tables 3–5 of Rao

(1971): EIx=GJh ¼ 1:0, E=G ¼ 2:0, a=b ¼ 1:0 and a=R ¼ 0:5, so that one may compare the current numerical

results with the exact solutions of Rao (1971). For simplicity, the values of moment of inertias for the cross-

sectional areas are usually calculated with the classical simple formulas (Kawakami et al., 1995, Yang and
(a) (b)

(c)
(d)

Fig. 5. The relationships between the lowest four natural frequencies ( ~xxi, i ¼ 1–4) of the 180� clamped–clamped Timoshenko beam and

the total number of curved beam elements, ne, for (a) ~xx1, (b) ~xx2, (c) ~xx3, and (d) ~xx4.
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Wu, 2001; Lee et al., 2002), Ix ¼ ab3=12, Iy ¼ a3b=12 and Jh ¼ Ix þ Iy , rather than by the laborious formulas

given by Eqs. (3b) and (3c). This is one of the main reasons that the numerical results of one report may be

slightly different from those of the other report as shown by Davis et al. (1972b). Since the natural fre-

quencies obtained with the values of Ix and Jh defined by Eqs. (3b) and (3c) are more close to the exact
values of Rao (1971), this paper uses Eqs. (3b) and (3c) to calculate the values of Ix and Jh except those

relating to Yang and Wu (2001).

Table 1(panel A) shows the influence of the total subtended angle �aa and the slenderness ratioeSSr ¼ ½b=ðR�aaÞ�ðb=RÞ on the lowest four frequency parameters of the circular Euler, rotary and Timoshenko

curved beams, bi ¼ xi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qAR4=ðEIxÞ

p
(i ¼ 1–4), based on the ‘‘consistent-mass’’ model, while Table 1(panel

B) shows that based on the ‘‘lumped-mass’’ model. Where the symbols ‘‘�’’ and ‘‘_’’ on the top of the
Table 1

The lowest four natural-frequency parameters of the 180�, 270� and 360� circular arcs with fixed end conditions, bi ¼ xi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qAR4=ðEIxÞ

p
(i ¼ 1–4), based on ‘‘consistent-mass’’ (panel A) and ‘‘lumped-mass’’ (panel B) models

�aa
(eSSr)

Mode

no., i
Euler beam Rotary beam Timoshenko beam

Exact

(Rao,

1971)

~bbi
�bbi Exact

(Rao,

1971)

~bbi
�bbi Exact

(Rao,

1971)

~bbi
�bbi

Panel A

180�
(0.080)

1 1.839 1.837 1.838 1.769 1.770 1.773 1.647 1.654 1.659

2 5.305 5.310 5.312 4.778 4.773 4.786 4.176 4.177 4.173

3 11.108 11.118 11.123 9.360 9.341 9.375 7.701 7.699 7.729

4 19.006 19.022 19.031 14.841 14.818 14.869 11.676 11.686 11.709

270�
(0.053)

1 0.758 0.760 0.761 0.747 0.748 0.748 0.729 0.726 0.727

2 2.000 2.001 2.003 1.888 1.887 1.892 1.758 1.777 1.783

3 4.406 4.408 4.414 3.997 3.993 4.006 3.624 3.597 3.610

4 7.822 7.832 7.842 6.778 6.770 6.795 4.898 5.705 5.777

360�
(0.040)

1 0.438 0.438 0.439 0.433 0.434 0.434 0.424 0.426 0.427

2 0.952 0.952 0.9551 0.918 0.918 0.921 0.887 0.893 0.896

3 2.137 2.139 2.144 2.005 2.005 2.012 1.892 1.893 1.901

4 3.965 3.971 3.980 3.661 3.606 3.620 3.312 3.315 3.327

~bb�
i

�bb�
i

~bb�
i

�bb�
i

~bb�
i

�bb�
i

Panel B

180�
(0.080)

1 1.839 1.837 1.837 1.769 1.770 1.772 1.647 1.654 1.657

2 5.305 5.310 5.307 4.778 4.772 4.781 4.176 4.150 4.168

3 11.108 11.116 11.111 9.360 9.324 9.361 7.701 7.654 7.711

4 19.006 19.016 19.010 14.841 14.715 14.829 11.676 11.533 11.661

270�
(0.053)

1 0.758 0.760 0.7605 0.747 0.748 0.748 0.729 0.726 0.727

2 2.000 2.001 2.000 1.888 1.887 1.889 1.758 1.776 1.779

3 4.406 4.408 4.404 3.997 3.991 3.997 3.624 3.586 3.601

4 7.822 7.830 7.824 6.778 6.756 6.776 4.898 5.668 5.773

360�
(0.040)

1 0.438 0.438 0.438 0.433 0.434 0.434 0.424 0.426 0.426

2 0.952 0.952 0.952 0.918 0.918 0.919 0.887 0.892 0.894

3 2.137 2.139 2.137 2.005 2.004 2.006 1.892 1.891 1.895

4 3.965 3.970 3.965 3.661 3.603 3.607 3.312 3.300 3.313

Note: ~bbi and
�bbi with ‘‘consistent-mass’’ model and ~bb�

i and �bb�
i with ‘‘lumped-mass’’ model are obtained from CB and SB elements,

respectively. �aa is the total subtended angle and eSSr is the slenderness ratio defined by eSSr ¼ ½b=ðR�aaÞ�ðb=RÞ.
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notation bi denote the values of bi obtained using the curved beam (CB) elements and straight beam (SB)

elements, respectively, while the right superscript ‘‘�’’ on bi shown in Table 1(panel B) denotes the values of

bi obtained using lumped-mass model. In other words, the notation bi (without superscript ‘‘�’’) denotes the
values of bi obtained using consistent-mass model (cf. Table 1(panel A)). From Table 1 one sees that: (i)
The values of bi (i ¼ 1–4) obtained from SB element based on the consistent-mass model, �bbi, are very close

to the corresponding ones obtained from the CB element based on the consistent-mass model, ~bbi, parti-

cularly those for the lowest three modes (i.e., �bbi � ~bbi); (ii) The values of bi (i ¼ 1–4) obtained from the SB

element based on lumped-mass model, �bb�
i , are very close to the corresponding ones obtained from the CB

element based on the lumped-mass model, ~bb�
i (i.e.,

�bb�
i � ~bb�

i ); (iii) The values of bi (i ¼ 1–4) obtained from

either the SB element (�bbi and
�bb�
i ) or the CB element (~bbi and

~bb�
i ) are also very close to the corresponding exact

solutions given by Rao (1971) as listed in columns 3, 6 and 9 of Table 1, respectively; (iv) The values of

either ~bbi,
�bbi,

~bb�
i or �bb�

i (i ¼ 1–4), decrease with increasing the total subtended angle �aa; (v) The differences
between the values of either ~bbi,

�bbi,
~bb�
i or

�bb�
i (i ¼ 1–4) for the Timoshenko beams and the corresponding ones

for the rotary (or Euler) beams decrease with decreasing the slenderness ratios eSSr ¼ ½b=ðR�aaÞ�ðb=RÞ. Based
on all the above-mentioned reasonable results, it is believed that the theory presented and the computer

programs developed for this paper should be available.

For a straight beam, the effects of rotary inertias and shear deformation are dependent upon the length

ratio defined by Sr ¼ b=L with L being the beam length. However, for a curved beam, the last effects are

dependent upon both the arc-length ratio b=ðR�aaÞ and thickness ratio b=R. Therefore, the slenderness ratio
for a curved beam is defined by eSSr ¼ ½b=ðR�aaÞ�ðb=RÞ in this paper.
8.3. Validation of forced vibration responses

To confirm the reliability of the presented theories regarding the forced vibration responses of a hori-

zontally curved beam subjected to a moving load (cf. Fig. 6), the example given by Yang and Wu (2001)

was solved using the CB elements incorporated with the consistent-mass models here. The curved beam was

simply supported (i.e., uy ¼ wh ¼ 0) and the given data are: a ¼ 5 m, b ¼ 1:8 m, �aa ¼ 30� ¼ p=6 rad, R ¼
45:84 m, total arc length L ¼ R�aa ¼ 24 m, E ¼ 32:2� 109 N/m2, v ¼ 0:2, G ¼ E=½2ð1þ vÞ� ¼ 13:417� 109 N/

m2, k0 ¼ 0:833, Ix ¼ ab3=12 ¼ 2:43 m4, Iy ¼ ba3=12 ¼ 18:75 m4, Jh ¼ Ix þ Iy ¼ 21:18 m4, A ¼ ab ¼ 9 m2,

VP ¼ 40 m/s, P ¼ 9:8� 29:9� 103 N and damping ratio nd ¼ 0. It is noted that, to agree with Yang and Wu
Fig. 6. Nomenclature for a horizontally curved beam subjected to a moving load P .



Fig. 7. Time histories of vertical displacements at the middle point C of the simply supported 30� horizontally curved beam subjected to

a moving load with P ¼ 293,020 N, VP ¼ 40 m/s and damping ratio nd ¼ 0 obtained from Yang and Wu (2001) (____) and from this

paper: (––) for Euler beam; (� � � � � � �) for Timoshenko beam.
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(2001), the values of Ix and Jh are calculated with the classical simple formulas, Ix ¼ ab3=12, Iy ¼ a3b=12 and
Jh ¼ Ix þ Iy , in this section and with Eqs. (3b) and (3c) throughout the paper.

The equations of motion for the forced vibrating system were solved with the Newmark direct inte-
gration method (Bathe, 1982) with time step Dt ¼ 0:001 s. Fig. 7 shows the time histories of the vertical

displacements at the middle point C of the curved beam, u�yyðtÞ. Where the solid line (––) was obtained from

Yang and Wu (2001) and the dash line (– – –) and the dotted line with stars (� � � � � � �) were obtained from

this paper based on the Euler beam theory and Timoshenko beam theory, respectively, using CB elements

incorporated with the consistent-mass model. Closeness to each other between the three curves reveals the

availability of the presented theories and the developed computer programs. Since the present curved beam

is a ‘‘thin’’ beam with slenderness ratio eSSr ¼ ½b=ðR�aaÞ�ðb=RÞ ¼ 0:0029, the effects of shear deformation and

rotary inertias are negligible. This is the reason why the time history of the Euler beam is very close to that
of the Timoshenko beam as shown in Fig. 7.

8.4. Effect of slenderness ratio (eSSr) on natural frequencies

From Table 1 one finds that the frequency parameters bi (i ¼ 1–4) of the Timoshenko beams are much

smaller than the corresponding ones of the Eluer beams for the circular arc with subtended angle �aa ¼ 180�,
this is because the 180� circular arc is a ‘‘thick’’ beam with slenderness ratio eSSr ¼ ½b=ðR�aaÞ�ðb=RÞ ¼ 0:080.
However, for the arc with subtended angle �aa ¼ 360� the values of bi (i ¼ 1–4) for the Timoshenko beams

are very close to the corresponding ones for the Eluer beams, because slenderness ratio of the 360� arc,eSSr ¼ 0:040, is much smaller than that of the 180� arc. The circular arcs for Table 1 are ‘‘long’’ curved beams
with subtended angle �aa > 90�, thus, this section studies the effect of slenderness ratio eSSr on natural fre-

quencies of a ‘‘short’’ curved beam with �aa < 90�, i.e., the simply supported 30� horizontally curved beam

for Fig. 7. Here all dimensions of the curved beam are kept unchanged except that the size of the axial

thickness (b) is enlarged from 1.8 to 3.6, 5.4, and 7.2 m, respectively. Table 2 shows the influence of

slenderness ratio eSSr on the lowest four frequency parameters, ~bbi (i ¼ 1–4), for the Euler beam, the rotary
beam and the Timoshenko beam obtained from the CB elements incorporated with the consistent-mass



Table 2

The lowest four frequency parameters of the simply supported 30� horizontally curved beam, ~bbi ¼ xi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qAR4=ðEIxÞ

p
(i ¼ 1–4), obtained

from CB elements incorporated with the ‘‘consistent-mass’’ model

Axial thickness b, m �aa (eSSr) Mode no., i Euler beam Rotary beam Timoshenko beam

1.8 30� (0.0029) 1 34.866 34.755 34.543

0.318% 0.926%

2 142.864 141.430 138.019

1.003% 3.391%

3 322.869 316.047 300.285

2.112% 6.994%

4 574.919 554.205 510.319

3.602% 11.236%

3.6 30� (0.0118) 1 34.608 34.209 33.433

1.152% 3.395%

2 142.600 137.226 126.330

3.768% 11.109%

3 322.604 297.742 255.927

7.706% 20.668%

4 574.665 519.567 406.392

9.587% 29.281%

5.4 30� (0.0265) 1 34.388 33.509 31.966

2.556% 7.043%

2 142.368 130.891 115.894

8.061% 18.595%

3 322.380 272.055 229.496

15.610% 28.811%

4 574.432 475.899 345.183

17.153% 39.908%

7.2 30� (0.0472) 1 34.238 32.700 30.336

4.492% 11.396%

2 142.204 122.956 100.103

13.535% 29.606%

3 322.202 270.102 181.516

16.169% 43.663%

4 574.250 435.295 326.408

24.197% 43.159%

Note: e % ¼ ð~bbiEuler � ~bbiXÞ � 100%=~bbiEuler (X¼ rotary, Timoshenko). �aa is the total subtended angle and eSSr is the slenderness ratio

defined by

eSSr ¼ ½b=ðR�aaÞ�ðb=RÞ:
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model. It is seen that the effect of the slenderness ratio eSSr on the current ‘‘short’’ circular arcs is the same as
that on the ‘‘long’’ ones for Table 1: the values of ~bbi (i ¼ 1–4) for the Timoshenko beam are very close to the

corresponding ones for the rotary (or Euler) beam if eSSr < 0:0029 and those for the Timoshenko beam are

much smaller than the corresponding ones for the rotary (or Euler) beam if eSSr > 0:0472. The percentage

differences (e %) in Table 2 were determined from the formula: e % ¼ ð~bbiEuler � ~bbiXÞ � 100%=~bbiEuler with

X¼ rotary and Timoshenko, and ~bbiEuler being the values of ~bbi obtained from the Euler beams as shown in

column 4 of Table 2.

From the final four rows of Table 1(panel A or B) one finds that the effects of shear deformation and

rotary inertias on the lowest four natural frequencies of the ‘‘clamped–clamped’’ 360� curved beam (with
slenderness ratio eSSr ¼ 0:040) are small, however, this is not true for the ‘‘simply supported’’ 30� curved
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beam (with slenderness ratio eSSr ¼ 0:0472) as one may see from the final four rows of Table 2. It is believed

that the last phenomenon is reasonable, because the modal displacements of a ‘‘clamped–clamped’’ beam

are much smaller than those of a ‘‘simply supported’’ beam if their slenderness ratios are close to each

other.
8.5. Effect of Slenderness Ratio (eSSr) on Forced Vibration Responses

In general, the influence of a factor on the forced vibration responses of a vibrating system will be similar
to its influence on the frequency parameters of the same vibrating system. To confirm the last statement, the

simply supported 30� horizontally curved beam for Fig. 7 and Table 2 with slenderness ratio eSSr ¼ 0:0472
and subjected to the moving load with P ¼ 293,020 N, VP ¼ 40 m/s, but damping ratio nd ¼ 0:05 is studied.

Fig. 8. shows the time histories for the vertical displacements at the middle point C of the curved beam,

where the solid line (––) is obtained from the Euler beam, the dashed line with triangles (–M–) is from the

rotary beam and the dotted line with stars (� � � � � � �) is from the Timoshenko beam. In Fig. 7, the time

history for the Euler beam is very close to that for the Timoshenko beam, but this is not true for the time

histories shown in Fig. 8. This is because the slenderness ratio for Fig. 7 (eSSr ¼ 0:0029) is much smaller than
that for Fig. 8 (eSSr ¼ 0:0472). In other words, for a ‘‘thin’’ beam (i.e., the one with small slenderness ratio)

the frequency parameters and the forced vibration responses of the Euler beam or the rotary beam are very

close to those of the Timoshenko beam, but for a ‘‘thick’’ beam (i.e., the one with large slenderness ratio)

the frequency parameters and the forced vibration responses of the Euler beam or the rotary beam will be

much different from those of the Timoshenko beam.
8.6. Dynamic responses of a hybrid curved beam due to a moving load

Fig. 9 shows the plane view of the hybrid curved beam studied. It is composed of one 120� curved beam

segment and two identical straight beam segments. The given data for the curved beam are: a ¼ 0:1 m,

b ¼ 0:04 m, A ¼ 4� 10�3 m2, R ¼ 0:5 m, E ¼ 18:4� 1010 N/m2, m ¼ 0:27, G ¼ E=½2ð1þ vÞ� ¼ 7:244� 1010
Fig. 8. Time histories of vertical displacements at middle point C of the simply supported 30� horizontally curved beam with slen-

derness ratio eSSr ¼ 0:0472 and subjected to a moving load with P ¼ 293,020 N, VP ¼ 40 m/s and damping ratio nd ¼ 0:05: (––) for Euler

beam; (-M-) for rotary beam; (� � � � � � �) for Timoshenko beam.



Fig. 9. Plane view for the clamped–clamped hybrid beam composed of one 120� circular beam segment and two identical straight beam

segments with junctions P and Q simply supported.

Table 3

The lowest five natural frequencies of the clamped–clamped hybrid curved beam shown in Fig. 9, xi (rad/s)

Mode no., i Natural frequencies, xi (rad/s)

S-C method S-S method

1 810.748 810.542

2 2413.574 2413.634

3 4899.331 4900.895

4 6885.820 6886.443

5 8052.980 8053.395
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N/m2, q ¼ 7:69� 103 kg/m3, k0 ¼ 0:833. The cross-sections for the two straight beam segments are the same

as those of the circular beam segment and the length for each of them is R tan 30� ¼ 0:2887 m.

Two techniques were used to solve the problem: the S-C method and the S-S method. The S-C method is

a new approach with the straight parts of the hybrid beam modeled by the straight beam elements and the

circular part modeled by the curved beam elements, while the S-S method is the conventional finite element
method with both the straight parts and the circular part of the hybrid beam modeled by the straight beam

elements. The lowest five natural frequencies of the hybrid curved beam, xi (i ¼ 1–5), were shown in Table

3. From Table 3 one sees that the values of xi (i ¼ 1–5) obtained from the S-C method are very close to the

corresponding ones from the S-S method. Thus, the key points presented in Section 5 for the modification

of property matrices of the conventional straight beam element will be correct.

If the hybrid curved beam is ‘‘at rest’’ at time t ¼ 0 and is subjected to a moving load with magnitude

P ¼ 50,000 N and tangential speed VP ¼ 0:5 m/s moves from the left end A to right end B along the

centerline of the hybrid beam (see Fig. 9), then the time histories for the vertical displacements at the middle
point C of the hybrid beam were shown in Fig. 10. In which, the solid lines (––) denote the time histories

obtained from the S-C method and the dashed lines (- - -) denote those obtained from the S-S method.

Among the three solid lines and the three dashed lines, those without any attachments (–– and - - -) were

obtained from the Euler beam theory, those with triangles (–M– and -M-) from the rotary beam theory and

those with star (–�– and -�-) from the Timoshenko beam theory. Since the present hybrid beam is a ‘‘thin’’

beam (with slenderness ratio eSSr ¼ ½b=ðR�aaÞ�ðb=RÞ � 0:002), its dynamic responses obtained from the Euler



Fig. 10. The time histories for middle point C of the hybrid beam shown in Fig. 9 subjected to a moving load with magnitude

P ¼ 50,000 N and tangential speed VP ¼ 0:5 m/s along the centerline; obtained from the S-C method (––, –M–, –�–); obtained from the

S-S method (- - -, - -M- -, - -�- -).

Fig. 11. Influence of moving speed (VP ) on the maximum vertical displacements at the middle point C of the hybrid beam subjected to a

moving load with magnitude P ¼ 50,000 N obtained from the S-C method (––, –M–, –�–) and the S-S method (- - -, -M-,-�-). The static
deflection at the middle point C of the hybrid beam is dst57 ¼ 5:47� 10�3 m.
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beam theory or the rotary beam theory are very close to those obtained from the Tiomshenko beam theory

as shown in Fig. 10. From Fig. 10 one sees that the maximum vertical displacement at the middle point C of

the hybrid beam occurs at the instant of time t � 1:62 s. The instantaneous distance of the moving load

from the initial position, the left end A of the hybrid beam, is s ¼ VP t ¼ 0:5� 1:62 ¼ 0:81 m, which is near

the middle point C of the hybrid beam. Therefore, the maximum vertical displacement at the middle point
C of the hybrid beam due to a moving load will occurs at the instant of time that the moving load passing
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through the middle point C. From Fig. 10 one also finds that the vertical displacement of the middle point

C gradually increases when the moving load P moves towards C and gradually decreases when the moving

load moves away from C. It is evident that all the last results agree with the actual situations.

The influence of the moving-load speed VP on the maximum vertical central displacements of the hybrid
beam was shown in Fig. 11. Where the legends for the six curves are exactly the same as those shown in Fig.

10. It is evident that the dynamic responses of the hybrid beam obtained from the S-C methods (denoted by

the solid lines) are very close to those obtained from the S-S method (denoted by the dashed lines). The last

result agrees with that obtained from Table 3 for the lowest five natural frequencies. In addition, the dy-

namic responses obtained from the Timoshenko beam theory are very close to those obtained from the

rotary beam theory or the Euler beam theory. Since the static deflection at the middle point C of the hybrid

beam is found to be dst57 ¼ 5:471� 10�3 m, dividing the ordinates of Fig. 11 by dst57 will give the corre-

sponding magnification factors for the hybrid beam.
9. Conclusions

1. If a beam with rotary inertias and shear deformation neglected is called the Euler beam, that with the
effect of bending and torsional inertias considered is called the rotary beam, and that with the effects of both

the rotary inertias and shear deformation considered is called the Timoshenko beam, then the stiffness

matrix and mass matrix for the curved beam element and the straight beam element presented in this paper

are available for the Euler (classical) curved beams, the rotary curved beams and the Timoshenko curved

beams.

2. Using either the curved beam element or the straight beam element, the natural frequency parameters

(br) obtained from the lumped-mass model are very close to the corresponding ones obtained from the

consistent-mass model, thus, for simplicity, one may use the simple lumped mass matrix instead of the
complex consistent mass matrix to perform the dynamic analysis of the curved beams.

3. For a curved beam with axial thickness b, total subtended angle �aa and average radius of curvature R,
the effects of rotary inertias and shear deformation are dependent upon both the arc-length ratio b=ðR�aaÞ
and thickness ratio b=R, thus, the slenderness ratio for a curved beam was defined by eSSr ¼ ½b=ðR�aaÞ�ðb=RÞ in
this paper. Numerical results reveal that the influence of slenderness ratio eSSr on the free vibration responses

of a curved beam is similar to that on the forced vibration responses, and for a ‘‘thin’’ curved beam (i.e., the

one with small slenderness ratio, e.g., eSSr < 0:0029), the effects of rotary inertias and shear deformation are

negligible. It is noted that, the slenderness ratio for a conventional straight beam is only dependent upon
the length ratio and is defined by Sr ¼ b=L with L being the beam length.

4. For a hybrid beam composed of curved and straight beam segments, if the technique modeling the

straight parts of the hybrid beam by straight beam elements and the curved parts by curved beam elements

is called the S-C method and that modeling all the hybrid beam by the conventional straight beam elements

is called the S-S method, then either the S-C method or the S-S method may be used to predict the dynamic

behaviors of the hybrid curved beam to achieve the satisfactory results.

5. When the S-C method is used to perform the dynamic analysis of a hybrid curved beam, appropriate

modification in the property matrices of the conventional straight beam element is necessary. In such a case,
the key points presented in Section 5 (cf. Fig. 2 also) will be beneficial.
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Appendix A. Coefficients of Matrix [H ]
H 11 ¼ A½h�h2h1
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CSOA
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cos h
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h1
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��
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h2

4
� A
�

þ Jh � Ix
R2

�
h sin 2h

4
� A
�

þ Jh � Ix
R2

�
cos 2h

8
þ Ix � 2COJh

R2

� �
sin2 h
2

	h2
h1
H54 ¼
�
� A
�

þ Ix þ ð1þ 4COÞJh
R2

�
h
4
þ A
�

þ Jh � Ix
R2

�
h sin2 h

4

þ A
�

þ Ix þ ð1� 4COÞJh
R2

�
sin h cos h

4

	h2
h1
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H55 ¼ A
��

þ Ix þ Jh
R2

�
h3

6
� A
�

þ Jh � Ix
R2

�
2h2 � 1

8

� �
sin 2h� A

�
þ Jh � Ix

R2

�
h cos 2h

4

þ Ix � 2COJh
R2

� �
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h
2
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	h2
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H 61 ¼ A cos h½ þ h sin h�h2h1
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�
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�
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4
þ A
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�
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8
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R2
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sin2 h
2

	h2
h1
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R2
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2
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OJh
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sin2 h
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h sin 2h

4

�
þ cos 2h
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H66 ¼ A
��

þ Ix þ Jh
R2

�
h3

6
þ A
�

þ Jh � Ix
R2

�
2h2 � 1

8

� �
sin 2hþ A

�
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where
f ðhÞ½ �h2h1 ¼ f ðh2Þ � f ðh1Þ
References

Bathe, K.J., 1982. Finite Element Procedures in Engineering Analysis. Prentice-Hall, New Jersey.

Bickford, W.B., Maganty, S.P., 1986. On the out-of-plane vibrations of thick rings. J. Sound Vibrat. 108 (3), 503–507.

Chaudhuri, S.K., Shore, S., 1977. Dynamic analysis of horizontally curved I-girder bridge. J. Struct. Div., ASCE 103 (ST8), 1589–

1604.

Davis, R., Henshel, R.D., Warburton, G.B., 1972a. Curved beam finite elements for coupled bending and torsional vibration.

Earthquake Eng. Struct. Dynam. 1, 165–175.

Davis, R., Henshell, R.D., Warburton, G.B., 1972b. Discussion of �effects of transverse shear and rotatory inertia on the coupled twist-

bending vibrations of circular rings�. J. Sound Vibrat. 21 (2), 241–247.



7448 J.-S. Wu, L.-K. Chiang / International Journal of Solids and Structures 40 (2003) 7425–7448
Howson, W.P., Jemah, A.K., 1999. Exact out-of-plane natural frequencies of curved Timoshenko beams. J. Eng. Mech., ASCE 125 (1),

19–25.

Kawakami, M., Sakiyama, T., Matsuda, H., Morita, C., 1995. In-plane and out-of-plane free vibrations of curved beams with variable

sections. J. Sound Vibrat. 187 (3), 381–401.

Kirkhope, J., 1976. Out-of-plane vibration of thick circular ring. J. Eng. Mech. Div., ASCE 102 (EM2), 239–247.

Lebeck, A.O., Knowlton, J.S., 1985. A finite element for three-dimensional deformation of a circular ring. Int. J. Numer. Meth. Eng.

21, 421–435.

Lee, B.K., Oh, S.J., Park, K.K., 2002. Free vibrations of shear deformable circular curved beams resting on elastic foundation. Int. J.

Struct. Stability Dynam. 2 (1), 77–97.

Palaninathan, R., Chandrasekharan, P.S., 1985. Curved beam element stiffness matrix formulation. Comp. Struct. 21 (4), 663–669.

Przemieniecki, J.S., 1968. Theory of Matrix Structural Analysis. McGraw-Hill.

Rao, S.S., 1971. Effects of transverse shear and rotatory inertia on the coupled twist-bending vibrations of circular rings. J. Sound

Vibrat. 16 (4), 551–566.

Silva, J.M.M., Urgueira, A.P.V., 1988. Out-of-plane dynamic response of curved beams––an analytical model. Int. J. Solid Struct.

24 (3), 271–284.

Wang, T.M., Nettleton, R.H., Keita, B., 1980. Natural frequencies for out-of-plane vibrations of continuous curved beams. J. Sound

Vibrat. 68 (3), 427–436.

Wu, J.S., Chiang, L.K., 2003. Out-of-plane free vibrations of circular curved Timoshenko beams using the finite curved beam elements.

Technical Report, Department of Naval Architecture and Marine Engineering, National Chen-Kung University, Tainan, Taiwan

701, Republic of China.

Yang, Y.B., Wu, C.M., 2001. Dynamic response of a horizontally curved beam subjected to vertical and horizontal moving loads.

J. Sound Vibrat. 242 (3), 519–537.

Yoo, C.H., Fehrenbach, J.P., 1981. Natural frequencies of curved girders. J. Eng. Mech. Div., ASCE 107 (EM2), 339–354.


	Out-of-plane responses of a circular curved Timoshenko beam due to a moving load
	Introduction
	Displacement functions and shape functions
	Stiffness matrix for curved beam element
	Mass matrix for curved beam element
	Property matrices and shape functions for straight beam element
	External loading vector due to a moving load
	Transformation from local to global coordinate system
	Transformation matrix for the curved beam element
	Transformation matrix for the straight beam element

	Numerical results and discussions
	Convergence of the presented method
	Validation of natural frequencies
	Validation of forced vibration responses
	Effect of slenderness ratio (Sr) on natural frequencies
	Effect of Slenderness Ratio (Sr) on Forced Vibration Responses
	Dynamic responses of a hybrid curved beam due to a moving load

	Conclusions
	Acknowledgements
	Coefficients of Matrix [H]
	References


